Page 342 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 342

CHAP. 12]                      IMPROPER INTEGRALS                               333
                                                                     !

                                      ð                          2   2
                                      1    x cos ax   cos bx  1    þ b
                     12.65. (a)Prove that  e            dx ¼  ln  2  2  ;    A 0.
                                      0          x          2     þ a

                                             ð
                                              1  cos ax   cos bx  b
                           (b)Use (a)toprove that          dx ¼ ln  .
                                              0      x           a
                                                                                       ð
                                                                                        1
                            The results of (b) and Problem 12.60 are special cases of Frullani’s integral,  FðaxÞ  FðbxÞ
                                                                                              x     dx ¼
                                                                         ð              0
                                 b                                        1
                           Fð0Þ ln  , where FðtÞ is continuous for t > 0, F ð0Þ exists and  FðtÞ  dt converges.
                                                              0
                                 a                                        1  t
                                ð
                                1    2
                     12.66. Given  e   x  1  p ffiffiffiffiffiffiffiffi  Prove that for p ¼ 1; 2; 3; ...,
                                             = ,  > 0.
                                          2
                                      dx ¼
                                0
                                                 ð                           p ffiffiffi
                                                  1  2p   x 2  1 3 5  ð2p   1Þ
                                                   x e   dx ¼
                                                  0          2 2 2     2   2  ð2pþ1Þ=2
                                              ð
                                               1    2     2     p ffiffiffiffiffiffi  p ffiffiffiffiffiffi
                     12.67. If a > 0; b > 0, prove that  ðe  a=x    e  b=x  Þ dx ¼   b     a.
                                               0
                                   ð     1        1
                                    1                          b
                     12.68. Prove that  tan ðx=aÞ  tan ðx=bÞ  dx ¼  ln  where a > 0; b > 0.
                                    0        x             2   a
                                   ð
                                    1     dx      4
                     12.69. Prove that          ¼ p .  [Hint: Use Problem 12.38.]
                                        2      3  3 3 ffiffiffi
                                     1 ðx þ x þ 1Þ
                     MISCELLANEOUS PROBLEMS
                                              2
                                   ð
                                    1
                     12.70. Prove that  lnð1 þ xÞ  dx converges.
                                    0    x
                                                          "
                                   ð                                    1 ð  ðnþ1Þ
                                         dx                            X          dx
                                    1
                     12.71. Prove that       2  converges.  Hint: Consider           2   and use the fact that
                                          3
                                                                                  3
                                    0 1 þ x sin x                      n¼0  n   1 þ x sin x
                           ð  ðnþ1Þ        ð  ðnþ1Þ
                                   dx    @          dx     :
                                                      3
                                                         2
                                      2
                                   3
                           n   1 þ x sin x  n   1 þðn Þ sin x
                                   ð
                                    1   xdx
                     12.72. Prove that         diverges.
                                            2
                                         3
                                    0 1 þ x sin x
                                      ð       2 2
                                      1
                     12.73. (a)Prove that  lnð1 þ   x Þ  dx ¼   lnð1 þ  Þ;    A 0.
                                              2
                                      0   1 þ x
                                               =2
                                             ð
                           (b)Use (a)toshow that  ln sin   d  ¼   ln 2:
                                              0            2
                                   ð   4
                                    1  sin x
                     12.74. Prove that    dx ¼ .
                                      x 4     3
                                    0
                                           ffiffiffi
                                         p
                     12.75. Evaluate  (a) lf1= xg;  ðbÞ lfcosh axg;  ðcÞ lfðsin xÞ=xg.
                                                  s
                                  p  ffiffiffiffiffiffiffi                       1 1
                           Ans:  ðaÞ   =s; s > 0 ðbÞ  ; s > jajðcÞ tan  ; s > 0:
                                                 2
                                                s   a 2              s
                                                                                  ax
                                                      ax
                     12.76. (a)If lfFðxÞg ¼ f ðsÞ,prove that lfe FðxÞg ¼ f ðs   aÞ;  ðbÞ Evaluate lfe sin bxg.
                                       b
                           Ans:  ðbÞ        ; s > a
                                       2
                                   ðs   aÞ þ b 2
   337   338   339   340   341   342   343   344   345   346   347