Page 339 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 339

330                            IMPROPER INTEGRALS                         [CHAP. 12



                     12.36. Solve the differential equation Y ðxÞþ YðxÞ¼ x; Yð0Þ¼ 0; Y ð0Þ¼ 2.
                                                     00
                                                                            0
                              Take the Laplace transform of both sides of the given differential equation. Then by Problem 12.35,
                                           lfY ðxÞþ YðxÞg ¼ lfxg;  lfY ðxÞg þ lfYðxÞg ¼ 1=s 2
                                                                      00
                                               00
                                                 2
                          and so                s lfYðxÞg   sYð0Þ  Y ð0Þþ lfYðxÞg ¼ 1=s 2
                                                                  0
                          Solving for lfYðxÞg using the given conditions, we find
                                                               2s 2   1    1
                                                              2  2    s 2  s þ 1
                                                                          2
                                                    lfYðxÞg ¼       ¼  þ                             ð1Þ
                                                             s ðs þ 1Þ
                          by methods of partial fractions.
                                   1             1                       1    1
                              Since  ¼ lfxg and     ¼ lfsin xg; it follows that  þ  ¼ lfx þ sin xg:
                                                                             2
                                                2
                                  s 2          s þ 1                     s 2  s þ 1
                              Hence, from (1), lfYðxÞg ¼ lfx þ sin xg, from which we can conclude that YðxÞ¼ x þ sin x which is,
                          in fact, found to be a solution.
                          Another method:
                                                                                               1
                              If lfFðxÞg ¼ f ðsÞ,we call f ðsÞ the inverse Laplace transform of FðxÞ and write f ðsÞ¼ l fFðxÞg.
                                               1
                                                             1
                                                                      1
                              By Problem 12.78, l f f ðsÞþ gðsÞg ¼ l f f ðsÞg þ l fgðsÞg.  Then from (1),

                                                  1 1   1        1 1     1    1

                                         YðxÞ¼ l     þ      ¼ l      þ l         ¼ x þ sin x
                                                                            2
                                                       2
                                                   s 2  s þ 1     s 2      s þ 1
                              Inverse Laplace transforms can be read from the table on Page 315.
                                                Supplementary Problems

                     IMPROPER INTEGRALS OF THE FIRST KIND
                     12.37. Test for convergence:
                              ð  2                  ð                    ð       2
                               1  x þ 1              1   dx               1     x dx
                                     dx
                              0 x þ 1                 1 x þ 4              1 ðx þ x þ 1Þ
                          ðaÞ    4               ðdÞ    4             ðgÞ     2      5=2
                              ð                     ð                     ð
                               1  xdx                1  2 þ sin x         1  ln xdx
                                                              dx
                                  3
                          ðbÞ   p ffiffiffiffiffiffiffiffiffiffiffiffiffi  ðeÞ     2            ðhÞ        x
                              2  x   1                1 x þ 1             1 x þ e
                              ð                     ð                     ð   2
                              1    dx                1  xdx               1  sin x
                                                                                dx
                          ðcÞ    p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ð f Þ  3            ðiÞ    2
                              1 x 3x þ 2             2 ðln xÞ             0  x
                          Ans.(a)conv., (b)div., (c)conv., (d)conv., (e)conv., ( f )div., (g)conv., (h)div., (i)conv.
                                   ð
                                   1      dx
                     12.38. Prove that          ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi if b > jaj.
                                       2
                                    1 x þ 2ax þ b 2  b   a 2
                                                    2
                                              ð               ð                  ð
                                               1               1                  1
                                                                                           2
                                                                        x
                     12.39. Test for convergence:  (a)  e  x ln xdx;  ðbÞ  e   x  lnð1 þ e Þ dx;  ðcÞ  e  x  cosh x dx.
                                               1               0                  0
                          Ans. (a)conv.,  (b)conv.,  (c)div.
   334   335   336   337   338   339   340   341   342   343   344