Page 336 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 336

CHAP. 12]                      IMPROPER INTEGRALS                               327

                                    ð
                                      1   cos x
                                     1
                     12.28. Prove that    2   dx ¼ .
                                     0   x         2
                                      x 1   cos x  1   cos x              ð 1  1   cos x
                              Since e        @          for   A 0; x A 0 and       dx converges [see Problem
                                        x 2       x 2                     0   x 2
                                                            ð
                                                             1    x 1   cos x
                           12.7(b)], it follows by the Weierstrass test that  e  2  dx is uniformly convergent and represents
                                                             0       x
                           acontinuous function of   for   A 0(Theorem 6, Page 314). Then letting   ! 0þ,using Problem 12.27, we
                           have
                                        ð                ð
                                         1    x 1   cos x  1  1   cos x      1 1
                                                                                     2
                                     lim   e         dx ¼         dx ¼ lim tan     lnð  þ 1Þ ¼
                                      !0þ  0    x 2       0   x 2      !0        2           2
                                      sin x    sin x
                                    ð       ð    2
                                     1       1
                     12.29. Prove that     ¼     2  dx ¼ .
                                     0  x    0  x        2
                              Integrating by parts, we have
                                 M  1   cos x    1             M  sin x  1   cos    1   cos M  M  sin x
                                 ð                          M  ð                          ð
                                                             þ      dx ¼                þ       dx
                                          dx ¼
                                                   ð1   cos xÞ
                                     x 2         x                x                M         x
                              Taking the limit as   ! 0þ and M !1 shows that
                                                     ð         ð
                                                      1  sin x  1  1   cos x
                                                      0  x  dx ¼  0  x  dx ¼  2
                                    ð             ð    2        ð   2
                                     1  1   cos x  1            1  sin u
                              Since       2  dx ¼ 2  sin ðx=2Þ  dx ¼  2  du  on  letting  u ¼ x=2,  we  also  have
                                                        2
                                     0   x         0   x        0  u
                           ð   2
                            1 sin x
                                  dx ¼ .
                           0  x 2     2
                                         3
                                      sin x
                                    ð
                                     1
                     12.30. Prove that     dx ¼ .
                                     0  x       4
                                                  ix   ix  2  ix 3  ix 2   ix  ix   ix 2   ix 3
                                           3    e   e     ðe Þ   3ðe Þ ðe  Þþ 3ðe Þðe  Þ  ðe  Þ
                                                   2i
                                         sin x ¼         ¼                 3
                                                                        ð2iÞ
                                                            !
                                                                  ix

                                                 1 e  3ix    e  3ix  3 e   e  ix     1  3
                                                                                     sin x
                                                 4     2i      4    2i      4       4
                                              ¼              þ           ¼    sin 3x þ
                           Then
                                      ð   3       ð          ð           ð          ð
                                       1  sin x  3  1  sin x  1  1  sin 3x  3  1  sin x  1  1  sin u
                                                                                          du
                                                                               dx
                                                        dx
                                             dx ¼
                                                                    dx ¼
                                       0  x      4 0  x     4 0  x      4 0  x     4 0  u
                                                 3     1


                                               ¼           ¼
                                                 4 2   4 2   4
                     MISCELLANEOUS PROBLEMS
                                    ð
                                     1   x 2  p ffiffiffi
                     12.31. Prove that  e  dx ¼   =2.
                                     0
                                                                    ð  M      ð  M
                              By Problem 12.6, the integral converges.  Let I M ¼  e  x 2  dx ¼  e  y 2  dy and let lim I M ¼ I,the
                                                                     0         0           M!1
                           required value of the integral.  Then
   331   332   333   334   335   336   337   338   339   340   341