Page 313 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 313

304                               INFINITE SERIES                         [CHAP. 11

                                         n 1
                                    1
                                   X
                     11.127. Prove that  ð 1Þ  converges uniformly for all x, but not absolutely.
                                      n þ x 2
                                   n¼1
                                      1  1  1            1
                                                          ln 2
                                                      ffiffiffi
                     11.128. Prove that 1   þ    þ      ¼ p þ
                                      4  7  10      3 3  3
                                                    n 1 n 1
                                               1
                                               X       n
                                  y              ð 1Þ      n
                                                     n!
                     11.129. If x ¼ ye ,prove that y ¼    x  for  1=e < x @ 1=e.
                                               n¼1

                     11.130. Prove that the equation e  ¼     1 has only one real root and show that it is given by
                                                                   n 1 n 1  n
                                                              1
                                                             X       n  e
                                                                ð 1Þ
                                                                     n!
                                                         ¼ 1 þ
                                                             n¼1
                                x           B 2 x 2  B 3 x 3
                     11.131. Let   ¼ 1 þ B 1 x þ  þ   þ      .  (a) Show that the numbers B n ,called the Bernoulli numbers,
                               x
                              e   1          2!    3!
                                                          n
                                                                     k
                                                       n
                           satisfy the recursion formula ðB þ 1Þ   B ¼ 0 where B is formally replaced by B k after expanding.
                           (b)Using (a)orotherwise, determine B 1 ; ... ; B 6 .
                           Ans:         1     1            1  ; B 5 ¼ 0; B 6 ¼ .
                                                                       1
                                        2     6            30          42
                                ðbÞ B 1 ¼  ; B 2 ¼ ; B 3 ¼ 0; B 4 ¼
                                        x    x     x
                     11.132. (a)Prove that     coth   1 :  ðbÞ Use Problem 11.127 and part (a)toshow that B 2kþ1 ¼ 0if
                                       x
                                      e   1  ¼  2  2
                           k ¼ 1; 2; 3; .. . :
                     11.133. Derive the series expansions:
                                    1  x  x 3     B 2n ð2xÞ 2n
                                    x  3  45       ð2nÞ!x
                          ðaÞ coth x ¼  þ    þ     þ     þ
                                   1  x  x  3           2n
                                                  n B 2n ð2xÞ
                                   x  3  45         ð2nÞ!x
                          ðbÞ cot x ¼       þ    ð 1Þ     þ
                                      x 3  2x 5         2n        2n 1
                                                    n 1 2ð2   1ÞB 2n ð2xÞ
                          ðcÞ tan x ¼ x þ  þ  þ    ð 1Þ              þ
                                       3  15                ð2nÞ!
                                   1  x   7  3       n 1 2ð2 2n 1    1ÞB 2n x 2n 1
                                   x  6  360                 ð2nÞ!
                          ðdÞ csc x ¼  þ þ  x þ    ð 1Þ               þ
                          [Hint: For (a)use Problem 11.132; for (b) replace x by ix in (a); for (c)use tan x ¼ cot x   2cot2x;for (d)use
                          csc x ¼ cot x þ tan x=2.]

                                    1
                                   Y      1
                     11.134. Prove that  1 þ  converges.
                                         n 3
                                   n¼1

                                                   1
                                                   Y     1
                     11.135. Use the definition to prove that  1 þ  diverges.
                                                         n
                                                   n¼1
                                    1
                                   Y
                     11.136. Prove that  ð1   u n Þ, where 0 < u n < 1, converges if and only if  u n converges.
                                   n¼1

                                      1
                                      Y     1
                                                         1
                     11.137. (a)Prove that  1    converges to .(b) Evaluate the infinite product in (a)to2decimal places and
                                                         2
                                            n 2
                                      n¼2
                           compare with the true value.
                     11.138. Prove that the series 1 þ 0   1 þ 1 þ 0   1 þ 1 þ 0   1 þ      is the C   1summable to zero.
   308   309   310   311   312   313   314   315   316   317   318