Page 311 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 311

302                               INFINITE SERIES                         [CHAP. 11



                     POWER SERIES
                                                  x 2  x 3  x 4
                                                           þ     .
                                                  2   3  4
                     11.100. (a)Prove that lnð1 þ xÞ¼ x    þ
                                                   1
                                                 1
                                              1
                           ðbÞ Prove that ln 2 ¼ 1   þ   þ      :
                                              2  3  4
                                               1

                                                          2
                                                              3
                             Hint: Use the fact that  ¼ 1   x þ x   x þ     and integrate.
                                              1 þ x
                     11.101. Prove that sin  1  x ¼ x þ 1 x 3  þ  1   3 x 5  þ  1   3   5 x 7  þ      ,  1 @ x @ 1.
                                             2 3  2   4 5  2   4   6 7
                                      ð 1=2         ð 1  1   cos x
                     11.102. Evaluate  (a)  e  x 2  dx;  ðdÞ  dx to 3 decimal places, justifying all steps.
                                       0            0   x
                           Ans.  ðaÞ 0:461;  ðbÞ 0:486
                     11.103. Evaluate  (a) sin 408;  ðbÞ cos 658;  ðcÞ tan 128 correct to 3 decimal places.
                           Ans:  ðaÞ 0:643;  ðbÞ 0:423;  ðcÞ 0:213
                     11.104. Verify the expansions 4, 5, and 6 on Page 275.
                     11.105. By multiplying the series for sin x and cos x,verify that 2 sin x cos x ¼ sin 2x.
                                             x 2  4x 4  31x 6  !
                     11.106. Show that e cos x  ¼ e 1    þ     þ     ;  1 < x < 1.
                                              2!  4!  6!
                     11.107. Obtain the expansions
                                               x 3  x 5  x 7
                           ðaÞ tanh  1  x  ¼ x þ  þ  þ  þ                 1 < x < 1
                                               3   5   7
                                   p ffiffiffiffiffiffiffiffiffiffiffiffiffi  1 x 3  1   3 x 5  1   3   5 x 7
                                      2                                   1 @ x @ 1
                           ðbÞ lnðx þ  x þ 1 Þ¼ x    þ             þ
                                               2 3  2   4 5  2   4   6 7
                                       1=x 2
                                     e    x 6¼ 0
                     11.108. Let f ðxÞ¼       .Prove that the formal Taylor series about x ¼ 0corresponding to f ðxÞ exists
                                     0    x ¼ 0
                           but that it does not converge to the given function for any x 6¼ 0.
                     11.109. Prove that
                                               1         1  1

                              lnð1 þ xÞ           2            3
                                1 þ x          2         2  3
                           ðaÞ         ¼ x   1 þ  x þ 1 þ þ   x         for   1 < x < 1
                                                    3             4
                                                1 2x       1  1 2x
                                      2  2
                           ðbÞflnð1 þ xÞg ¼ x   1 þ  þ 1 þ þ              for   1 < x @ 1
                                                2  3       2  3  4
                     MISCELLANEOUS PROBLEMS
                     11.110. Prove that the series for J p ðxÞ converges (a)for all x,(b) absolutely and uniformly in any finite interval.
                                        d                  d                            2p
                                                                      p
                                                              p
                     11.111. Prove that  (a)  fJ 0 ðxÞg ¼  J 1 ðxÞ;  ðbÞ  fx J p ðxÞg ¼ x J p 1 ðxÞ;  ðcÞ J pþ1 ðxÞ¼  J p ðxÞ  J p 1 ðxÞ.
                                       dx                  dx                            x
                     11.112. Assuming that the result of Problem 11.111(c) holds for p ¼ 0;  1;  2; .. . ; prove that
                                                                        n
                           (a) J  1 ðxÞ¼ J 1 ðxÞ;  ðbÞ J  2 ðxÞ¼ J 2 ðxÞ;  ðcÞ J  n ðxÞ¼ ð 1Þ J n ðxÞ; n ¼ 1; 2; 3; .. . :
                                              1
                                             X
                                                     p
                     11.113. Prove that e 1=2xðt 1=tÞ  ¼  J p ðxÞ t .
                                            p¼ 1  xt=2  x=2t
                           [Hint: Write the left side as e  e  ,expand and use Problem 11.112.]
   306   307   308   309   310   311   312   313   314   315   316