Page 307 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 307

298                               INFINITE SERIES                         [CHAP. 11


                                  2                                   2                    2
                                 x þ 3y   2 ¼ 10   4ðx   1Þþ 4ð y þ 2Þ  2ðx   1Þ þ 2ðx   1Þð y þ 2Þþ ðx   1Þ ð y þ 2Þ
                          (Check this algebraically.)

                                      x þ y    x þ y   2
                     11.55. Prove that ln  ¼             ; 0 <  < 1; x > 0; y > 0.  Hint: Use the Taylor formula
                                       2    2 þ  ðx þ y   2Þ
                          with the linear term as the remainder.


                                                                      to second-degree terms.
                     11.56. Expand f ðx; yÞ¼ sin xy in powers of x   1 and y
                                                                    2
                                                   1  2   2                      2

                                                   8         2         2       2
                                                1     ðx   1Þ   ðx   1Þ y      y





                                                Supplementary Problems

                     CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS
                                              1    1     1        X       1
                                                                   1
                     11.57.  (a)Prove that the series                           converges and (b) find its sum.
                                             3   7  þ  7   11  þ  11   15  þ      ¼
                                                                  n¼1  ð4n   1Þð4n þ 3Þ
                           Ans.  (b)1/12
                     11.58.  Prove that the convergence or divergence of a series is not affected by  (a) multiplying each term by the
                           same non-zero constant,  (b) removing (or adding) a finite number of terms.

                     11.59.  If  u n and  v n converge to A and B, respectively, prove that  ðu n þ v n Þ converges to A þ B.

                                          3
                                              3 2
                                                            3 n
                                                  3 3
                     11.60.  Prove that the series þð Þ þð Þ þ     ¼  ð Þ diverges.
                                          2
                                                            2
                                                  2
                                              2
                     11.61.  Find the fallacy: Let S ¼ 1   1 þ 1   1 þ 1   1 þ     .  Then S ¼ 1  ð1   1Þ ð1   1Þ       ¼ 1 and
                           S ¼ð1   1Þþð1   1Þþð1   1Þþ     ¼ 0.  Hence, 1 ¼ 0.
                     COMPARISON TEST AND QUOTIENT TEST
                     11.62.  Test for convergence:
                              1            1             1                 1   n       1
                              X   1        X   n        X     n þ 2        X  3        X   1
                          ðaÞ    2   ;  ðbÞ    2   ;  ðcÞ       p ffiffiffiffiffiffiffiffiffiffiffi ;  ðdÞ  n  ;  ðeÞ  ;
                                n þ 1        4n   3        ðn þ 1Þ n þ 3     n   5       5n   3
                              n¼1          n¼1          n¼1                n¼1         n¼1
                              1
                              X    2n   1
                                 ð3n þ 2Þn  :
                          ð f Þ        4=3
                              n¼1
                          Ans:  ðaÞ conv.,  ðbÞ div.,  ðcÞ div.,  ðdÞ conv.,  ðeÞ div.,  ð f Þ conv.
                                                     1   2             1  r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                     X  4n þ 5n   2   X    n   ln n
                     11.63.  Investigate the convergence of (a)  ;               .   Ans.  (a)conv., (b)div.
                                                                           2
                                                          2   3=2  ðbÞ    n þ 10n 3
                                                     n¼1  nðn þ 1Þ    n¼1
                     11.64.  Establish the comparison test for divergence (see Page 267).
   302   303   304   305   306   307   308   309   310   311   312