Page 295 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 295

286                               INFINITE SERIES                         [CHAP. 11



                     SERIES OF FUNCTIONS
                     11.25. For what values of x do the following series converge?
                               1   n 1       1     n 1 2n 1     1                1        n
                               X  x         X  ð 1Þ  x          X        n       X  nðx   1Þ
                                      ;                   ;        n!ðx   aÞ ;              :
                          ðaÞ        n   ðbÞ                ðcÞ              ðdÞ    n
                                  n   3          ð2n   1Þ!
                               n¼1          n¼1                 n¼1              n¼1  2 ð3n   1Þ
                                  x n 1
                                     .  Assuming x 6¼ 0 (if x ¼ 0the series converges), we have
                          (a) u n ¼  n
                                  n   3
                                                            n        n
                                                           x      n   3       n      jxj
                                           lim     u nþ1    ¼ lim        ¼ lim
                                                    n!1 ðn þ 1Þ  3 nþ1     n 1    jxj¼  3

                                           n!1 u n                x     n!1 3ðn þ 1Þ
                              Then the series converges if  jxj  < 1, and diverges if  jxj  > 1.  If  jxj  ¼ 1, i.e., x ¼ 3, the test fails.
                                                   3                3        3
                                                        1   1   1
                                                      1       1
                                                     X       X
                                 If x ¼ 3the series becomes  ¼  , which diverges.
                                                        3n  3   n
                                                      n¼1    n¼1
                                                             n 1        n 1
                                                       1           1
                                                       X  ð 1Þ   1  X  ð 1Þ
                                 If x ¼ 3the series becomes    ¼          , which converges.
                                                           3n    3     n
                                                       n¼1        n¼1
                                 Then the interval of convergence is  3 @ x < 3.  The series diverges outisde this interval.
                                 Note that the series converges absolutely for  3 < x < 3. At x ¼ 3the series converges con-
                              ditionally.
                                                         n 1 2n 1
                                                               .  Then
                                                      ð 1Þ  x
                          (b)Proceed as in part (a)with u n ¼
                                                       ð2n   1Þ!

                                                          n 2nþ1
                                                        ð 1Þ x                 ð2n   1Þ!
                                                                                      2
                                          lim     u nþ1          ð2n   1Þ!     ¼ lim  x
                                                   n!1 ð2n þ 1Þ!
                                                                     x
                                                   ¼ lim                   n!1 ð2n þ 1Þ!
                                          n!1 u n                  n 1 2n 1
                                                                ð 1Þ
                                                           ð2n   1Þ!            x 2
                                                                      2
                                                 ¼ lim               x ¼ lim         ¼ 0
                                                   n!1 ð2n þ 1Þð2nÞð2n   1Þ!  n!1 ð2n þ 1Þð2nÞ
                              Then the series converges (absolutely) for all x, i.e., the interval of (absolute) convergence is
                               1 < x < 1.


                                                                nþ1

                                        n

                              u n ¼ n!ðx   aÞ ; lim     u nþ1      ðn þ 1Þ!ðx   aÞ    ¼ lim ðn þ 1Þjx   aj:

                          ðcÞ                    ¼ lim         n

                                         n!1 u n   n!1                n!1
                                                         n!ðx   aÞ
                                 This limit is infinite if x 6¼ a. Then the series converges only for x ¼ a.
                                        n                 nþ1
                                                            :  Then
                                  nðx   1Þ      ðn þ 1Þðx   1Þ
                                   n             2 nþ1
                          ðdÞ  u n ¼     ; u nþ1 ¼
                                  2 ð3n   1Þ        ð3n þ 2Þ

                                                          ðn þ 1Þð3n   1Þðx   1Þ      x   1    jx   1j
                                            lim     u nþ1    ¼ lim         ¼        ¼

                                           n!1 u n     n!1                    2     2
                                                            2nð3n þ 2Þ
                              Thus, the series converges for jx   1j < 2 and diverges for jx   1j > 2.
                                 The test fails for jx   1j¼ 2, i.e., x   1 ¼ 2or x ¼ 3 and x ¼ 1.
                                                       1
                                                      X    n
                                 For x ¼ 3the series becomes  , which diverges since the nth term does not approach zero.
                                                         3n   1
                                                      n¼1
                                                          1     n
                                                          X ð 1Þ n
                                 For x ¼ 1the series becomes     , which also diverges since the nth term does not
                              approach zero.              n¼1  3n   1
                                 Then the series converges only for jx   1j < 2, i.e.,  2 < x   1 < 2or  1 < x < 3.
   290   291   292   293   294   295   296   297   298   299   300