Page 349 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 349

340                               FOURIER SERIES                          [CHAP. 13



                     difference in tensions is Fðsin     sin  Þ. This is the force producing the acceleration that accounts for
                     the vibratory motion.     (   tan         tan    )                     @y
                        Now     Ffsin     sin  g¼ F p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   Fftan     tan  g¼ F  ðx þ  x; tÞ
                                                                    2
                                                        2
                                                  1 þ tan     1 þ tan                      @x
                     @y
                       ðx; tÞ , where the squared terms in the denominator are neglected because the vibrations are small.
                     @x
                     Next, equate the two forms of the force, i.e.,
                                                                            2
                                                 @y           @y       w    @ y
                                              F    ðx þ  x; tÞ   ðx; tÞ ¼   x
                                                 @x           @x       g    @t 2
                                                                  r ffiffiffiffiffiffi
                                                                   Fg
                                                                     , the resulting equation is
                                                                    w
                     divide by  x, and then let  x ! 0. After letting   ¼
                                                          2
                                                                 2
                                                         @ y   2  @ y
                                                            ¼
                                                         @t 2   @x 2
                        This homogeneous second partial derivative equation is the classical equation for the vibrating
                     string.  Associated boundary conditions are
                                                   yð0; tÞ¼ 0; yðL; tÞ¼ 0; t > 0
                        The initial conditions are
                                                             @y
                                                           2
                                            yðx; 0Þ¼ mðLx   x Þ;  ðx; 0Þ¼ 0; 0 < x < L
                                                              @t
                        The method of solution is to separate variables, i.e., assume
                                                       yðx; tÞ¼ GðxÞHðtÞ
                        Then upon substituting
                                                               2
                                                         00       00
                                                    GðxÞ H ðtÞ¼   G ðxÞ HðtÞ
                        Separating variables yields
                                         G  00  H  00  2
                                            ¼ k;   ¼   k; where k is an arbitrary constant
                                         G      H
                     Since the solution must be periodic, trial solutions are
                                                         p ffiffiffiffiffiffiffi   p  ffiffiffiffiffiffiffi
                                              GðxÞ¼ c 1 sin   k x þ c 2 cos   k x;< 0
                                                          p ffiffiffiffiffiffiffi    p ffiffiffiffiffiffiffi
                                              HðtÞ¼ c 3 sin    k t þ c 4 cos    k t
                        Therefore
                                                p ffiffiffiffiffiffiffi   p ffiffiffiffiffiffiffi   p ffiffiffiffiffiffiffi    p ffiffiffiffiffiffiffi
                                  y ¼ GH ¼½c 1 sin   k x þ c 2 cos   k xнc 3 sin    k t þ c 4 cos    k tŠ
                     The initial condition y ¼ 0at x ¼ 0 for all t leads to the evaluation c 2 ¼ 0.
                        Thus
                                                   p ffiffiffiffiffiffiffi   p ffiffiffiffiffiffiffi    p ffiffiffiffiffiffiffi
                                           y ¼½c 1 sin   k xнc 3 sin    k t þ c 4 cos    k tŠ
                                                                                    p ffiffiffiffiffiffiffi    p ffiffiffiffiffiffiffi
                        Now impose the boundary condition y ¼ 0at x ¼ L, thus 0 ¼½c 1 sin   k Lнc 3 sin    k t þ
                            ffiffiffiffiffiffiffi
                     c 4 cos    k tŠ:
                           p
                        c 1 6¼ 0as that would imply y ¼ 0 and a trivial solution. The next simplest solution results from the
                                 n          h     n   ih    n           n   i
                            ffiffiffiffiffiffiffi
                           p
                     choice   k ¼  , since y ¼ c 1 sin  x c 3 sin    t þ c 4 cos    t and the first factor is zero when
                                 L                L          l          L
                     x ¼ L.
   344   345   346   347   348   349   350   351   352   353   354