Page 353 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 353

344                               FOURIER SERIES                          [CHAP. 13

                                 L    k x      L    k x
                                ð             ð
                     13.2. Prove   sin   dx ¼    cos    dx ¼ 0   if k ¼ 1; 2; 3; ... .
                                  L    L        L    L
                                   ð L  k x       L         L   L        L
                                      sin   dx ¼    cos  k x      ¼   cos k  þ  cosð k Þ¼ 0
                                     L   L       k     L     L  k        k
                                    L   k x     L    k x     L       L
                                   ð                      L
                                      cos   dx ¼  sin      ¼   sin k     sinð k Þ¼ 0
                                     L   L      k     L     L  k     k


                                    ð L   m x     n x     ð L   m x    n x        0  m 6¼ n
                     13.3. Prove  (a)  cos     cos   dx ¼    sin    sin    dx ¼
                                      L     L      L        L    L      L        L  m ¼ n
                                    ð L   m x    n x
                                 (b)   sin    cos    dx ¼ 0
                                      L    L      L
                          where m and n can assume any of the values 1; 2; 3; ... .
                                                                                          1
                                                          1
                          (a)From   trigonometry:  cos A cos B ¼ fcosðA   BÞþ cosðA þ BÞg;  sin A sin B ¼ fcosðA   BÞ  cos
                                                          2                               2
                              ðA þ BÞg:
                                 Then, if m 6¼ n,byProblem 13.2,
                                       ð  L  m x   n x    1  ð L     ðm   nÞ x  ðm þ nÞ x
                                         cos    cos   dx ¼     cos       þ cos        dx ¼ 0
                                        L    L      L     2  L       L           L
                              Similarly, if m 6¼ n,
                                       ð L  m x    n x    1  ð L     ðm   nÞ x  ðm þ nÞ x
                                          sin   sin   dx ¼     cos         cos        dx ¼ 0
                                         L   L     L      2  L       L           L
                                 If m ¼ n,we have
                                              L   m x    n x    1  L       2n x
                                             ð                   ð
                                                cos   cos   dx ¼     1 þ cos    dx ¼ L
                                               L    L     L     2  L        L
                                              L    m x   n x    1  L       2n x
                                             ð                   ð
                                                sin    sin  dx ¼     1   cos    dx ¼ L
                                               L    L     L     2  L        L
                                 Note that if m ¼ n these integrals are equal to 2L and 0 respectively.
                                              1
                          (b)We have sin A cos B ¼ fsinðA   BÞþ sinðA þ BÞg. Then by Problem 13.2, if m 6¼ n,
                                              2
                                        L   m x    n x    1  L    ðm   nÞ x  ðm þ nÞ x
                                       ð                   ð
                                          sin   cos   dx ¼     sin       þ sin        dx ¼ 0
                                         L    L     L     2  L       L          L
                                 If m ¼ n,
                                                L    m x    n x    1  L  2n x
                                               ð                    ð
                                                  sin    cos   dx ¼    sin   dx ¼ 0
                                                 L    L     L      2  L    L
                                 The results of parts (a) and (b) remain valid even when the limits of integration  L; L are replaced
                              by c; c þ 2L, respectively.


                                        X        n x       n x
                                        1
                                           a n cos  þ b n sin  converges uniformly to f ðxÞ in ð L; LÞ, show that
                                                  L         L
                     13.4. If the series A þ
                                        n¼1
                          for n ¼ 1; 2; 3; ... ;
                                  1  ð L     n x             1  ð L     n x            a 0
                                       f ðxÞ cos  dx;             f ðxÞ sin  dx;         :
                          ðaÞ a n ¼                   ðbÞ b n ¼                 ðcÞ A ¼
                                  L  L        L              L  L        L              2
   348   349   350   351   352   353   354   355   356   357   358