Page 357 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 357

348                               FOURIER SERIES                          [CHAP. 13


                                                             f (x)
                                                               2

                                                                                         x
                                               _       _
                                               6        3               3        6
                                                                 _
                                                                 2
                                                              Fig. 13-8


                                 From Fig. 13-9 below it is seen that the function is neither even nor odd.

                                                         f (x)
                                                          1

                                                                                                    x
                                    _           _         O
                                     2p         p                     p          2p         3p

                                                              Fig. 13-9


                          ðcÞ f ðxÞ¼ xð10   xÞ; 0 < x < 10; Period ¼ 10:

                                 From Fig. 13-10 below the function is seen to be even.

                                                              f (x)


                                                                          25

                                                                                              x
                                           _                   O
                                            10                             5         10
                                                             Fig. 13-10



                     13.9. Show that an even function can have no sine terms in its Fourier expansion.
                          Method 1:  No sine terms appear if b n ¼ 0; n ¼ 1; 2; 3; .. . .  Toshow this, let us write
                                           1  ð  L  n x     1  ð 0    n x    1  ð L   n x
                                               f ðxÞ sin        f ðxÞ sin       f ðxÞ sin  dx
                                       b n ¼            dx ¼             dx þ                        ð1Þ
                                          L  L       L      L  L       L     L 0       L
                          If we make the transformation x ¼ u in the first integral on the right of (1), we obtain

                                      1  ð  0   n x    1  ð  L      n u      1  ð  L   n u
                                          f ðxÞ sin  dx ¼  f ð uÞ sin    du ¼   f ð uÞ sin  du       ð2Þ
                                      L  L       L     L 0          L        L 0        L
                                                         1  ð  L  n u      1  ð L   n x
                                                            f ðuÞ sin         f ðxÞ sin  dx
                                                     ¼               du ¼
                                                         L 0      L       L 0       L
                          where we have used the fact that for an even function f ð uÞ¼ f ðuÞ and in the last step that the dummy
                          variable of integration u can be replaced by any other symbol, in particular x. Thus, from (1), using (2), we
                          have
   352   353   354   355   356   357   358   359   360   361   362