Page 356 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 356

CHAP. 13]                         FOURIER SERIES                                347

                                                            f (x)



                                                                        4p  2

                                                                                                    x
                               _ 6p      _ 4p      _ 2p      O           2p        4p         6p
                                                              Fig. 13-7



                                  Period ¼ 2L ¼ 2  and L ¼  .  Choosing c ¼ 0, we have
                                          1  ð cþ2L  n x     1  ð 2   2
                                               f ðxÞ cos        x cos nx dx
                                      a n ¼           L  dx ¼
                                          L c                  0
                                                                                2
                                          1   2  sin nx      cos nx     sin nx     4
                                                  n          n          n       0  n
                                        ¼   ðx Þ       ð2xÞ   2    þ 2   3       ¼  2 ;  n 6¼ 0
                                         1  ð 2   2  8  2
                              If n ¼ 0; a 0 ¼  x dx ¼  :
                                           0       3
                                             1  ð cþ2L  n x    1  ð  2   2
                                                  f ðxÞ sin        x sin nx dx
                                         b n ¼           L  dx ¼
                                             L c                 0
                                                                                    2
                                             1   2     cos nx    sin nx    cos nx      4

                                                      n           n          n      0  n
                                           ¼   ðx Þ        ð2xÞ    2   þð2Þ   3     ¼
                                              4   2  X    4    4
                                                    1
                                            2
                                               3      n        n
                                 Then f ðxÞ¼ x ¼  þ    2  cos nx    sin nx :
                                                   n¼1
                                                                                         2
                                  This is valid for 0 < x < 2 .At x ¼ 0 and x ¼ 2  the series converges to 2  .
                           (b)Ifthe period is not specified, the Fourier series cannot be determined uniquely in general.
                                                                1   1   1         2
                     13.7. Using the results of Problem 13.6, prove that  þ  þ  þ     ¼  .
                                                                1 2  2 2  3 2    6
                                                                      4  2  X  4
                                                                           1
                              At x ¼ 0the Fourier series of Problem 13.6 reduces to  þ  .
                                                                       3     n 2
                                                                           n¼1
                                                                                2
                                                                                     2
                                                                          1
                              By the Dirichlet conditions, the series converges at x ¼ 0to ð0 þ 4  Þ¼ 2  .
                                                                          2
                                  4  2  X  4   2      X  1    2
                                       1
                                                       1
                              Then   þ     ¼ 2  , and so   ¼  .
                                   3     n 2             n 2  6
                                       n¼1            n¼1
                     ODD AND EVEN FUNCTIONS, HALF RANGE FOURIER SERIES
                     13.8. Classify each of the following functions according as they are even, odd, or neither even nor odd.
                                      2    0 < x < 3

                                                      Period ¼ 6
                           ðaÞ f ðxÞ¼
                                      2   3 < x < 0
                                  From Fig. 13-8 below it is seen that f ð xÞ¼  f ðxÞ,sothat the function is odd.
                                     cos x  0 < x <

                                                        Period ¼ 2
                           ðbÞ f ðxÞ¼
                                      0     < x < 2
   351   352   353   354   355   356   357   358   359   360   361