Page 355 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 355

346                               FOURIER SERIES                          [CHAP. 13



                                                            f (x)
                                                             Period


                                                                    3
                                                                                           x
                                            _     _      _
                                             15    10    5           5    10    15
                                                              Fig. 13-6


                          (a)Period ¼ 2L ¼ 10 and L ¼ 5.  Choose the interval c to c þ 2L as  5to 5,sothat c ¼ 5.  Then
                                              1  ð  cþ2L  n x   1  ð  5   n x
                                                   f ðxÞ cos        f ðxÞ cos  dx
                                          a n ¼             dx ¼
                                             L c          L     5  5       5
                                                 ð  0         ð 5             ð  5
                                             1         n x           n x     3     n x
                                                  ð0Þ cos       ð3Þ cos         cos   dx
                                             5   5      5      0      5      5 0    5
                                            ¼             dx þ          dx ¼
                                                          5
                                             3  5    n x
                                                  sin       ¼ 0  if n 6¼ 0
                                             5 n      5    0
                                            ¼
                                               3  ð 5  0 x  3  ð  5
                                                  cos           dx ¼ 3:
                                 If n ¼ 0; a n ¼ a 0 ¼  dx ¼
                                               5 0    5     5  0
                                              1  ð  cþ2L  n x   1  ð  5   n x
                                                   f ðxÞ sin        f ðxÞ sin  dx
                                          b n ¼             dx ¼
                                              L c         L     5  5       5
                                              1    ð  0  n x  ð 5    n x     3  ð  5  n x
                                                  ð0Þ sin       ð3Þ sin         sin   dx
                                              5   5     5      0      5      5 0   5
                                            ¼              dx þ         dx ¼

                                              3     5  n x   5  3ð1   cos n Þ
                                                    cos
                                            ¼               ¼
                                              5   n     5    0    n
                          (b) The corresponding Fourier series is
                                                                 1
                                        1
                                    a 0  X     n x      n x    3  X  3ð1   cos n Þ  n x
                                          a n cos  þ b n sin                 sin
                                    2  þ        L        L  ¼  2  þ    n         5
                                       n¼1                       n¼1
                                                              3  6      x  1  3 x  1  5 x
                                                                   sin     sin      sin
                                                            ¼  þ        þ        þ        þ
                                                              2       5   3    5  5    5
                          (c)  Since f ðxÞ satisfies the Dirichlet conditions, we can say that the series converges to f ðxÞ at all points of
                              continuity and to  f ðx þ 0Þþ f ðx   0Þ  at points of discontinuity. At x ¼ 5, 0, and 5, which are points
                                                 2
                              of discontinuity, the series converges to ð3 þ 0Þ=2 ¼ 3=2as seen from the graph. If we redefine f ðxÞ as
                              follows,
                                                     8
                                                       3=2    x ¼ 5
                                                     >
                                                     >
                                                     >
                                                     > 0    5 < x < 0
                                                     <
                                                       3=2      x ¼ 0    Period ¼ 10
                                                f ðxÞ¼
                                                     >
                                                     > 3    0 < x < 5
                                                     >
                                                     >
                                                       3=2      x ¼ 5
                                                     :
                              then the series will converge to f ðxÞ for  5 @ x @ 5.
                                        2
                     13.6. Expand f ðxÞ¼ x ; 0 < x < 2  in a Fourier series if (a) the period is 2 ,(b) the period is not
                          specified.
                          (a) The graph of f ðxÞ with period 2  is shown in Fig. 13-7 below.
   350   351   352   353   354   355   356   357   358   359   360