Page 360 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 360

CHAP. 13]                         FOURIER SERIES                                351

                                                             f (x)




                                                                                             x
                                            _      _     _     O
                                             6     4      2            2      4     6
                                                              Fig. 13-13


                              Thus b n ¼ 0,
                                                    2  ð L   n x    2  ð 2  n x
                                                       f ðxÞ cos       x cos   dx
                                                a n ¼           dx ¼
                                                    L 0       L     2 0     2
                                                                                   2
                                                        2    n x       4    n x
                                                          sin            cos
                                                        n     2       n      2     0
                                                  ¼ðxÞ            ð1Þ  2 2
                                                     4
                                                                   If n 6¼ 0
                                                  ¼  2 2  ðcos n    1Þ
                                                    n
                                            ð 2
                                              xdx ¼ 2:
                                 If n ¼ 0; a 0 ¼
                                             0
                                                     1
                                                     X   4            n x
                                 Then        f ðxÞ¼ 1 þ    ðcos n    1Þ cos
                                                        2 2
                                                        n              2
                                                     n¼1
                                                     8      x  1    3 x  1   5 x
                                                        cos      cos       cos
                                                           2   3     2  5     2
                                                ¼ 1    2     þ  2      þ  2     þ
                                  It should be noted that the given function f ðxÞ¼ x,0 < x < 2, is represented equally well by the
                              two different series in (a) and (b).
                     PARSEVAL’S IDENTITY
                     13.13. Assuming that the Fourier series corresponding to f ðxÞ converges uniformly to f ðxÞ in ð L; LÞ,
                           prove Parseval’s identity
                                                    1  ð  L  2    a 0 2  2   2
                                                        f f ðxÞg dx ¼  þ  ða n þ b n Þ
                                                    L  L           2
                           where the integral is assumed to exist.

                                         1
                                         X      n x       n x
                                     a 0
                                            a n cos  þ b n sin  ,then multiplying by f ðxÞ and integrating term by term
                                     2           L         L
                              If f ðxÞ¼  þ
                                         n¼1
                           from  L to L (which is justified since the series is uniformly convergent) we obtain
                                   L             L        1     L       n x       L       n x
                                  ð             ð              ð                 ð
                                         2    a 0         X
                                                             a n  f ðxÞ cos  dx þ b n  f ðxÞ sin  dx
                                     f f ðxÞg dx ¼  f ðxÞ dx þ
                                    L          2   L      n¼1    L       L         L      L
                                               2     1
                                              a 0    X  2   2
                                                L þ L
                                               2
                                             ¼         ða n þ b n Þ                                   ð1Þ
                                                     n¼1
                           where we have used the results
                                    ð L      n x           ð L     n x            ð L
                                       f ðxÞ cos  dx ¼ La n ;  f ðxÞ sin  dx ¼ Lb n ;  f ðxÞ dx ¼ La 0  ð2Þ
                                      L       L              L      L              L
                           obtained from the Fourier coefficients.
   355   356   357   358   359   360   361   362   363   364   365