Page 363 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 363

354                               FOURIER SERIES                          [CHAP. 13



                     CONVERGENCE OF FOURIER SERIES
                                                                          1
                                                                   sinðM þ Þt
                                                                          2
                     13.18. Prove that  (a)  1
                                        2  þ cos t þ cos 2t þ     þ cos Mt ¼  1
                                                                     2 sin t
                                                                         2
                                                  1             ð 0       1
                                        1  sinðM þ Þt    1     1   sinðM þ Þt    1
                                         ð
                                                  2
                                                                          2
                                     (b)         1   dt ¼ ;              1   dt ¼ :
                                          0  2 sin t     2           2 sin t     2
                                                 2                       2
                                                      1
                                           1
                                               1
                                                               1
                          (a)We have cos nt sin t ¼ fsinðn þ Þt   sinðn   Þtg.
                                           2   2      2        2
                                 Then summing from n ¼ 1to M,
                                         1                           3     1      5    3
                                         2                           2     2      2    2
                                       sin tfcos t þ cos 2t þ     þ cos Mtg¼ðsin t   sin tÞþðsin t   sin tÞ
                                                                              1

                                                                                        1
                                                                  þ     þ sinðM þ Þt   sinðM   Þt
                                                                              2         2
                                                                  1       1     1
                                                                  2       2     2
                                                                ¼ fsinðM þ Þt   sin tg
                                            1
                                                      1
                              On dividing by sin t and adding ,the required result follows.
                                            2         2
                          (b)Integrating the result in (a) from    to 0 and 0 to  , respectively. This gives the required results, since
                              the integrals of all the cosine terms are zero.
                                       ð                   ð
                     13.19. Prove that lim  f ðxÞ sin nx dx ¼ lim  f ðxÞ cos nx dx ¼ 0if f ðxÞ is piecewise continuous.
                                    n!1                n!1
                                                                          2   1
                                                                          a 0  X  2  2
                              This follows at once from Problem 13.15, since if the series  þ  ða n þ b n Þ is convergent, lim a n ¼
                           lim b n ¼ 0.                                   2  n¼1                 n!1
                          n!1
                              The result is sometimes called Riemann’s theorem.

                                        ð
                                                      1
                     13.20. Prove that lim  f ðxÞ sinðM þ Þxdx ¼ 0if f ðxÞ is piecewise continuous.
                                                      2
                                    M!1
                              We have
                                    ð                 ð                    ð
                                                                                    1
                                                1              1              f f ðxÞ cos xg sin Mx dx
                                                2              2                    2
                                       f ðxÞ sinðM þ Þxdx ¼  f f ðxÞ sin xg cos Mx dx þ

                          Then the required result follows at once by using the result of Problem 13.19, with f ðxÞ replaced by
                                1
                                           1
                          f ðxÞ sin x and f ðxÞ cos x respectively, which are piecewise continuous if f ðxÞ is.
                                2          2
                              The result can also be proved when the integration limits are a and b instead of    and  .
                     13.21. Assuming that L ¼  , i.e., that the Fourier series corresponding to f ðxÞ has period 2L ¼ 2 , show
                          that
                                                 M                      ð               1
                                                 X                     1         sinðM þ Þt
                                             a 0
                                                                                        2
                                             2                                     2 sin t
                                     S M ðxÞ¼  þ   ða n cos nx þ b n sin nxÞ¼  f ðt þ xÞ  1  dt
                                                 n¼1                                   2
                              Using the formulas for the Fourier coefficients with L ¼  ,we have
                                                     1                      1
                                                       ð                     ð
                                                                                f ðuÞ sin nu du sin nx
                                    a n cos nx þ b n sin nx ¼  f ðuÞ cos nu du cos nx þ

                                                    1  ð
                                                        f ðuÞ cos nu cos nx þ sin nu sin nxÞ du
                                                  ¼        ð

                                                    1  ð
                                                        f ðuÞ cos nðu   xÞ du
                                                  ¼

                                                              1  ð
                                                          a 0
                              Also,                                f ðuÞ du
                                                           2  ¼  2
   358   359   360   361   362   363   364   365   366   367   368