Page 364 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 364

CHAP. 13]                         FOURIER SERIES                                355

                                                         M
                                                     a 0  X
                              Then
                                                     2  þ  ða n cos nx þ b n sin nxÞ
                                              S M ðxÞ¼
                                                        n¼1

                                                                  M ð
                                                     1          1  X
                                                       ð
                                                   ¼     f ðuÞ du þ    f ðuÞ cos nðu   xÞ du
                                                     2
                                                                  n¼1
                                                                M
                                                     1  ð    ( 1  X       )
                                                                  cos nðu   xÞ du
                                                   ¼     f ðuÞ  þ
                                                             2
                                                                n¼1
                                                     1  ð         1
                                                                  2      du
                                                            sinðM þ Þðu   xÞ
                                                                 1
                                                   ¼     f ðuÞ
                                                              2 sin ðu   xÞ
                                                                 2
                           using Problem 13.18.  Letting u   x ¼ t,we have
                                                                           1
                                                          1  ð    x  sinðM þ Þt
                                                                           2
                                                   S M ðxÞ¼    f ðt þ xÞ  1   dt
                                                                       2 sin t
                                                               x          2
                              Since the integrand has period 2 ,wecan replace the interval      x;    x by any other interval of
                           length 2 ,in particular,   ;  .  Thus, we obtain the required result.
                     13.22. Prove that
                                                                                   !
                                                              1
                                                                ð 0
                                                                                    sinðM þ Þtdt
                                           f ðx þ 0Þþ f ðx   0Þ     f ðt þ xÞ  f ðx   0Þ   1
                                   S M ðxÞ                  ¼               1              2
                                                  2                      2 sin t
                                                                            2
                                                                                   !
                                                                1  ð    f ðt þ xÞ  f ðx þ 0Þ
                                                                                            1
                                                                                     sinðM þ Þtdt
                                                              þ              1              2
                                                                  0      2 sin t
                                                                             2
                              From Problem 13.21,
                                                                1
                                                                                     1
                                                1  ð  0   sinðM þ Þt  1  ð     sinðM þ Þt
                                                                                     2
                                                                2
                                         S M ðxÞ¼   f ðt þ xÞ  1  dt þ   f ðt þ xÞ  1  dt             ð1Þ
                                                           2 sin t      0       2 sin t
                                                                                    2
                                                               2
                              Multiplying the integrals of Problem 13.18(b)by f ðx   0Þ and f ðx þ 0Þ, respectively,
                                                                                          1
                                                                     1
                                                    1  ð 0    sinðM þ Þt  1  ð      sinðM þ Þt
                                                                     2                    2  dt
                                     f ðx þ 0Þþ f ðx   0Þ
                                                                   1
                                                                                         1
                                           2       ¼        f ðx   0Þ  2 sin t  dt þ    0  f ðx þ 0Þ  2 sin t  ð2Þ
                                                                   2                     2
                              Subtracting (2) from (1)yields the required result.
                     13.23. If f ðxÞ and f ðxÞ are piecewise continuous in ð  ;  Þ, prove that
                                     0
                                                               f ðx þ 0Þþ f ðx   0Þ
                                                    lim S M ðxÞ¼
                                                                      2
                                                    M!1
                              The function  f ðt þ xÞ  f ðx þ 0Þ  is piecewise continuous in 0 < t @   because f ðxÞ is piecewise con-
                                                1
                                                2
                           tinous.          2 sin t
                                                                           t
                              Also,  lim  f ðt þ xÞ  f ðx þ 0Þ  ¼ lim  f ðt þ xÞ  f ðx þ 0Þ     ¼ lim  f ðt þ xÞ  f ðx þ 0Þ  exists,
                                               1
                                                                            1
                                            2 sin t              t       2 sin t          t
                                               2                            2
                                    t!0þ               t!0þ                     t!0þ
                           since by hypothesis f ðxÞ is piecewise continuous so that the right-hand derivative of f ðxÞ at each x exists.
                                          0
                              Thus,  f ðt þ xÞ  f ðx   0Þ  is piecewise continous in 0 @ t @  .
                                           1
                                       2 sin t
                                           2
                              Similarly,  f ðt þ xÞ  f ðx   0Þ  is piecewise continous in    @ t @ 0.
                                             1
                                          2 sin t
                                             2
   359   360   361   362   363   364   365   366   367   368   369