Page 361 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 361

352                               FOURIER SERIES                          [CHAP. 13



                              The required result follows on dividing both sides of (1)by L. Parseval’s identity is valid under less
                          restrictive conditions than that imposed here.

                     13.14. (a)Write Parseval’s identity corresponding to the Fourier series of Problem 13.12(b).
                                                                 1   1   1       1
                          (b) Determine from (a) the sum S of the series  þ  þ  þ     þ  þ     .
                                                                 1 4  2 4  3 4   n 4
                                                 4
                                                    ðcos n    1Þ; n 6¼ 0; b n ¼ 0.
                                                n
                          (a)Here L ¼ 2; a 0 ¼ 2; a n ¼  2 2
                                 Then Parseval’s identity becomes
                                            1  ð  2  2   1  ð  2  2  ð2Þ 2  X  16    2
                                                                       1
                                               f f ðxÞg dx ¼  x dx ¼  þ   4 4  ðcos n    1Þ
                                            2  2         2  2      2     n
                                                                       n¼1
                                 8     64    1  1  1          1  1   1        4
                              or                   þ      ; i.e.,
                                 3  ¼ 2 þ   4  1 4  þ 3 4  þ  5 4  1 4  þ  3 4  þ  5 4  þ     ¼  96:
                                 1  1   1         1  1  1          1  1  1
                          ðbÞ S ¼  4  þ  4  þ  4  þ      ¼  4  þ  4  þ  4  þ     þ  4  þ  4  þ  4  þ
                                 1  2   3       1   3   5        2   4  6

                                                 1  1   1       1  1   1  1
                                                1   3   5       2  1   2  3
                                              ¼  4  þ  4  þ  4  þ     þ  4  4  þ  4  þ  4  þ
                                                 4  S                 4
                                                     ;
                                               96  16               90
                                              ¼  þ      from which S ¼
                     13.15. Prove that for all positive integers M,
                                                    2  M            ð L
                                                   a 0  X  2   2   1        2
                                                         ða n þ b n Þ @  f f ðxÞg dx
                                                   2  þ            L  L
                                                       n¼1
                          where a n and b n are the Fourier coefficients corresponding to f ðxÞ, and f ðxÞ is assumed piecewise
                          continuous in ð L; LÞ.
                                                              M
                                                             X       n x       n x
                                                          a 0
                              Let                  S M ðxÞ¼  þ   a n cos  þ b n sin                  (1)
                                                          2           L        L
                                                              n¼1
                          For M ¼ 1; 2; 3; ... this is the sequence of partial sums of the Fourier series corresponding to f ðxÞ.
                              We have
                                                       ð L
                                                                    2
                                                          f f ðxÞ  S M ðxÞg dx A 0                   ð2Þ
                                                         L
                          since the integrand is non-negative.  Expanding the integrand, we obtain
                                                L              L           L
                                               ð              ð           ð
                                                                                 2
                                                                  2
                                              2   f ðxÞ S M ðxÞ dx    S M ðxÞ dx @  f f ðxÞg dx      ð3Þ
                                                 L              L           L
                              Multiplying both sides of (1)by2 f ðxÞ and integrating from  L to L,using equations (2)ofProblem
                          13.13, gives
                                                                   (            )
                                                  ð L                2  M
                                                                    a 0  X  2  2
                                                 2   f ðxÞ S M ðxÞ dx ¼ 2L  þ  ða n þ b n Þ          ð4Þ
                                                    L               2  n¼1
                              Also, squaring (1) and integrating from  L to L,using Problem 13.3, we find
                                                                (            )
                                                                     M
                                                   ð L            2  X
                                                                            2
                                                                        2
                                                       2
                                                      S M ðxÞ dx ¼ L  a 0  þ  ða n þ b n Þ           ð5Þ
                                                     L           2   n¼1
                              Substitution of (4) and (5)into (3) and dividing by L yields the required result.
   356   357   358   359   360   361   362   363   364   365   366