Page 358 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 358

CHAP. 13]                         FOURIER SERIES                                349


                                                   1  ð L   n x    1  ð L   n x
                                                      f ðxÞ sin        f ðxÞ sin  dx ¼ 0
                                              b n ¼            dx þ
                                                   L 0       L     L 0       L
                                                           X       n x      n x
                                                            1
                                                        a 0
                           Method 2: Assume        f ðxÞ¼  þ   a n cos  þ b n sin  :
                                                        2           L        L
                                                           n¼1
                                                           X       n x       n x
                                                            1
                                                        a 0
                           Then                  f ð xÞ¼  þ    a n cos    b N sin  :
                                                        2           L        L
                                                           n¼1
                              If f ðxÞ is even, f ð xÞ¼ f ðxÞ.  Hence,
                                            1
                                                                      1
                                        a 0  X     n x      n x    a 0  X     n x      n x
                                               a n cos  þ b n sin        a n cos    b n sin
                                        2  þ        L        L  ¼  2  þ       L         L
                                           n¼1                        n¼1
                                              1                            1
                                             X      n x                a 0  X     n x
                           and so               b n sin  ¼ 0;                a n cos
                                                     L        i.e., f ðxÞ¼  2  þ   L
                                              n¼1                          n¼1
                           and no sine terms appear.
                              In a similar manner we can show that an odd function has no cosine terms (or constant term) in its
                           Fourier expansion.
                                                        2  ð L    n x
                     13.10. If f ðxÞ is even, show that  (a) a n ¼  f ðxÞ cos  dx;  ðbÞ b n ¼ 0.
                                                        L 0        L
                                          1  ð L    n x     1  ð 0    n x    1  ð L    n x
                                              f ðxÞ cos         f ðxÞ cos        f ðxÞ cos  dx
                           ðaÞ         a n ¼         L  dx ¼           L  dx þ         L
                                          L  L              L  L             L 0
                              Letting x ¼ u,
                                       1  ð 0    n x     1  ð  L      n u    1  ð  L  n u
                                           f ðxÞ cos  dx ¼  f ð uÞ cos   du ¼   f ðuÞ cos  du
                                       L  L       L      L 0         L       L 0       L
                              since by definition of an even function f ð uÞ¼ f ðuÞ.  Then
                                             ð L             ð  L             ð L
                                           1         n u    1        n x    2         n x
                                               f ðuÞ cos       f ðxÞ cos        f ðxÞ cos  dx
                                       a n ¼            du þ            dx ¼
                                           L 0       L     L 0        L     L 0       L
                           (b) This follows by Method 1 of Problem 13.9.
                     13.11. Expand f ðxÞ¼ sin x; 0 < x < ,ina Fourier cosine series.
                              A Fourier series consisting of cosine terms alone is obtained only for an even function.  Hence, we
                           extend the definition of f ðxÞ so that it becomes even (dashed part of Fig. 13-11 below). With this extension,
                           f ðxÞ is then defined in an interval of length 2 . Taking the period as 2 ,we have 2L ¼ 2  so that L ¼  .

                                                              f (x)



                                                                                                   x
                                       _            _          O
                                       2p           p                         p           2p
                                                             Fig. 13-11

                              By Problem 13.10, b n ¼ 0 and

                                                    2  ð  L  n x     2  ð
                                                       f ðxÞ cos        sin x cos nx dx
                                                a n ¼         L  dx ¼
                                                    L 0                0
   353   354   355   356   357   358   359   360   361   362   363