Page 359 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 359

350                               FOURIER SERIES                          [CHAP. 13



                                         1  ð                    1     cosðn þ 1Þx  cosðn   1Þx

                                                                       n þ 1     n   1
                                        ¼   fsinðx þ nxÞþ sinðx   nxÞg ¼      þ
                                           0                                             0
                                         1 1   cosðn þ 1Þ   cosðn   1Þ    1    1 1 þ cos n   1 þ cos n


                                               n þ 1        n   1          n þ 1    n   1
                                        ¼              þ             ¼
                                                       if n 6¼ 1:
                                          2ð1 þ cos n Þ
                                              2
                                        ¼
                                            ðn   1Þ
                                                               2
                                             2  ð          2 sin x
                              For n ¼ 1;  a 1 ¼  sin x cos xdx ¼     ¼ 0:
                                               0              2    0
                                             2  ð       2             4
                              For n ¼ 0;  a 0 ¼  sin xdx ¼  ð  cos xÞ    ¼  :
                                               0                 0
                                                      2  2  X
                                                          1
                              Then               f ðxÞ¼      ð1 þ cos n Þ  cos nx
                                                               2
                                                               n   1
                                                          n¼2

                                                      2  4 cos 2x  cos 4x  cos 6x
                                                           2   1  4   1  6   1
                                                    ¼       2   þ  2  þ  2   þ
                     13.12. Expand f ðxÞ¼ x; 0 < x < 2, in a half range  (a) sine series,  (b) cosine series.
                          (a) Extend the definition of the given function to that of the odd function of period 4 shown in Fig. 13-12
                              below.  This is sometimes called the odd extension of f ðxÞ.  Then 2L ¼ 4; L ¼ 2.
                                                            f (x)

                                                              O
                                                                                              x
                                           _  6  _  4   _ 2           2     4      6





                                                             Fig. 13-12


                                 Thus a n ¼ 0 and

                                               2  ð L   n x    2  ð  2  n x
                                                  f ðxÞ sin       x sin  dx
                                           b n ¼           dx ¼
                                               L 0       L     2 0     2

                                                                             2
                                                    2   n x        4    n x      4
                                                     cos             sin           cos n
                                                   n     2       n      2     0  n
                                             ¼ðxÞ            ð1Þ  2 2         ¼
                                                        4        n x
                                                     1
                                                     X
                              Then              f ðxÞ¼    cos n  sin
                                                       n          2
                                                     n¼1

                                                     4     x  1   2 x  1  3 x
                                                       sin     sin      sin
                                                          2   2    2  3    2
                                                   ¼                 þ
                          (b) Extend the definition of f ðxÞ to that of the even function of period 4 shown in Fig. 13-13 below. This is
                              the even extension of f ðxÞ.  Then 2L ¼ 4; L ¼ 2.
   354   355   356   357   358   359   360   361   362   363   364