Page 369 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 369

360                               FOURIER SERIES                          [CHAP. 13



                                       2   x  0 < x < 4
                                                     in a Fourier series of period 8.
                     13.31. Expand f ðxÞ¼
                                       x   6  4 < x < 8
                                16      x  1  3 x  1    5 x
                          Ans:     cos  þ  cos   þ   cos   þ
                                  2   4  3 2   4   5 2   4
                     13.32. (a) Expand f ðxÞ¼ cos x; 0 < x < ,ina Fourier sine series.
                          (b) How should f ðxÞ be defined at x ¼ 0 and x ¼   so that the series will converge to f ðxÞ for 0 @ x @  ?
                                   8  X  n sin 2nx
                                    1
                          Ans:  ðaÞ             ðbÞ f ð0Þ¼ f ð Þ¼ 0
                                       4n   1
                                        2
                                    n¼1
                     13.33. (a) Expand in a Fourier series f ðxÞ¼ cos x; 0 < x <  if the period is  ; and (b)compare with the result of
                          Problem 13.32, explaining the similarities and differences if any.
                          Ans. Answer is the same as in Problem 13.32.

                                       x    0 < x < 4
                                       8   x  4 < x < 8
                     13.34. Expand f ðxÞ¼            in a series of (a) sines,  (b)cosines.
                                  32  X  1  n    n x      16  X   2cos n =2   cos n    1    n x
                                                             1
                                     1
                          Ans:  ðaÞ      sin  sin      ðbÞ                       cos
                                    2  n 2  2     8         2          n 2           8
                                     n¼1                    n¼1
                     13.35. Prove that for 0 @ x @  ,
                                        2    cos 2x  cos 4x  cos 6x
                          ðaÞ xð    xÞ¼      2  þ  2  þ  2  þ
                                      6     1     2     3
                                      8 sin x  sin 3x  sin 5

                                         1    3     5
                          ðbÞ xð    xÞ¼   3  þ  3  þ  3  þ
                     13.36. Use the preceding problem to show that
                              1  1    2       1    n 1    2      1     n 1    3
                              X              X  ð 1Þ            X  ð 1Þ
                                      ;                  ;                   :
                          ðaÞ    2  ¼     ðbÞ     2  ¼       ðcÞ         3  ¼
                                n   6             n    12                  32
                              n¼1            n¼1                n¼1  ð2n   1Þ
                                   1  1   1  1   1   1       3  2  p ffiffiffi 2
                     13.37. Show that  þ        þ  þ         ¼   .
                                  1 3  3 3  5 3  7 3  9 3  11 3  16
                     DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES
                     13.38. (a) Show that for   < x < ,

                                                         sin x  sin 2x  sin 3x
                                                    x ¼ 2          þ
                                                          1     2     3
                          (b)Byintegrating the result of (a), show that for    @ x @  ,
                                                       2    cos x  cos 2x  cos 3x
                                                  2
                                                  x ¼    4   2     2  þ  2
                                                      3     1     2     3
                          (c)Byintegrating the result of (b), show that for    @ x @  ,

                                                               sin x  sin 2x  sin 3x
                                               xð    xÞð  þ xÞ¼ 12      þ
                                                                1 3  2 3   3 3
                     13.39. (a) Show that for   < x < ,
                                                 1         2        3         4
                                         x cos x ¼  sin x þ 2  sin 2x    sin 3x þ  sin 4x
                                                 2       1   3     2   4     3   5
                          (b)Use (a)to show that for    @ x @  ,

                                                      1        cos 2x  cos 3x  cos 4x
                                             x sin x ¼ 1   cos x   2      þ
                                                      2         1   3  2   4  3   5
   364   365   366   367   368   369   370   371   372   373   374