Page 370 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 370

CHAP. 13]                         FOURIER SERIES                                361


                     13.40. By differentiating the result of Problem 13.35(b), prove that for 0 @ x @  ,
                                                        4 cos x  cos 3x  cos 5x

                                                     2      1     3     5
                                                  x ¼        2  þ  2  þ  2  þ
                     PARSEVAL’S IDENTITY
                     13.41. By using Problem 13.35 and Parseval’s identity, show that

                                                        1     4       1      6
                                                       X  1          X  1
                                                          n  90         n   945
                                                    ðaÞ   4  ¼     ðbÞ   6  ¼
                                                       n¼1            n¼1
                                                          2
                                    1      1     1           8
                     13.42. Show that  þ     þ      þ      ¼  .  [Hint: Use Problem 13.11.]
                                   2
                                                2
                                          2
                                   1   3 2  3   5 2  5   7 2  16
                                            1                   1
                                       1           4       1           6
                                      X                    X
                     13.43. Show that  (a)          ;                    .
                                               4  ¼  96  ðbÞ       6  ¼  960
                                       n¼1  ð2n   1Þ       n¼1  ð2n   1Þ
                                                                     2
                                      1        1        1          4    39
                     13.44. Show that     þ        þ         þ      ¼    .
                                            2
                                   2
                                                         2
                                                     2
                                               2
                                      2
                                   1   2   3 2  2   3   4 2  3 þ 4 þ 5 2  16
                     BOUNDARY-VALUE PROBLEMS
                                        2
                                  @U   @ U
                     13.45. (a) Solve  ¼ 2  subject to the conditions Uð0; tÞ¼ 0; Uð4; tÞ¼ 0; Uðx; 0Þ¼ 3 sin  x   2 sin 5 x, where
                                  @t   @x 2
                           0 < x < 4; t > 0.
                           (b)Give a possible physical interpretation of the problem and solution.
                                             2
                           Ans:  ðaÞ Uðx; tÞ¼ 3e  2  t  sin  x   2e  50  t 2  sin 5 x.
                                    2
                               @U   @ U                                              10 < x < 3
                     13.46. Solve                                                             and interpret
                                @t  ¼  @x 2  subject to the conditions Uð0; tÞ¼ 0; Uð6; tÞ¼ 0; Uðx; 0Þ¼  03 < x < 6
                           physically.

                                       1
                                      X                 2 2    m x
                           Ans:          2  1   cosðm =3Þ  e  m   t=36  sin
                                               m                6
                               Uðx; tÞ¼
                                      m¼1
                     13.47. Show that if each side of equation (3), Page 356, is a constant c where c A 0, then there is no solution
                           satisfying the boundary-value problem.
                     13.48. Aflexible string of length   is tightly stretched between points x ¼ 0 and x ¼   on the x-axis, its ends are
                           fixed at these points. When set into small transverse vibration, the displacement Yðx; tÞ from the x-axis of
                                                   2
                                                          2
                                                   @ Y  2 @ Y
                                                                   2
                           any point x at time t is given by  ¼ a  , where a ¼ T= ; T ¼ tension,   ¼ mass per unit length.
                                                   @t 2   @x 2
                                                                                      2
                           (a)Find a solution of this equation (sometimes called the wave equation)with a ¼ 4 which satisfies the
                           conditions Yð0; tÞ¼ 0; Yð ; tÞ¼ 0; Yðx; 0Þ¼ 0:1 sin x þ 0:01 sin 4x; Y t ðx; 0Þ¼ 0for 0 < x < ; t > 0.
                           (b)Interpret physically the boundary conditions in (a) and the solution.
                           Ans.  (a) Yðx; tÞ¼ 0:1 sin x cos 2t þ 0:01 sin 4x cos 8t
                                                         2
                                                                2
                                                         @ Y   @ Y
                     13.49. (a) Solve the boundary-value problem  ¼ 9  subject to the conditions Yð0; tÞ¼ 0; Yð2; tÞ¼ 0,
                                                         @t 2  @x 2
                           Yðx; 0Þ¼ 0:05xð2   xÞ; Y t ðx; 0Þ¼ 0, where 0 < x < 2; t > 0.  (b)Interpret physically.
                                         1:6  X  1      ð2n   1Þ x  3ð2n   1Þ t
                                            1
                           Ans:  ðaÞ Yðx; tÞ¼  3    3  sin      cos
                                                           2          2
                                            n¼1  ð2n   1Þ
                                                         2
                                                    @U   @ U
                     13.50. Solve the boundary-value problem  ¼  ; Uð0; tÞ¼ 1; Uð ; tÞ¼ 3; Uðx; 0Þ¼ 2.
                                                     @t  @x 2
                           [Hint: Let Uðx; tÞ¼ Vðx; tÞþ FðxÞ and choose FðxÞ so as to simplify the differential equation and boundary
                           conditions for Vðx; tÞ:Š
   365   366   367   368   369   370   371   372   373   374   375