Page 375 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 375

366                             FOURIER INTEGRALS                         [CHAP. 14




                                           f
                                                       F
                        Now suppose that g ¼ f and thus G ¼ F, where the bar symbolizes the complex conjugate function.
                     Then (15) takes the form
                                                  ð            ð
                                                   1            1
                                                          2            2
                                                     j f ðuÞj du ¼  jFð Þj d                        ð16Þ
                                                    1            1
                     This is Parseval’s theorem for Fourier integrals.
                        Furthermore, if f and g are even functions, it can be shown that (15) reduces to the following
                     Parseval identities:
                                                ð             ð
                                                 1             1
                                                                 F c ð Þ G c ð Þ d
                                                   f ðuÞ gðuÞ du ¼                                  ð17Þ
                                                 0             0
                     where F c and G c are the Fourier cosine transforms of f and g.  If f and g are odd functions, the (15)
                     takes the form
                                                ð             ð
                                                 1             1
                                                                 F s ð Þ G s ð Þ d
                                                   f ðuÞ gðuÞ du ¼                                  ð18Þ
                                                 0             0
                     where F s and G s are the Fourier sine transforms of f and g.  (See Problem 14.3.)



                                                     Solved Problems


                     THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

                                                              1  jxj < a
                                                                      .
                                                              0  jxj > a
                     14.1. (a) Find the Fourier transform of f ðxÞ¼
                          (b) Graph f ðxÞ and its Fourier transform for a ¼ 3.
                          (a) The Fourier transform of f ðxÞ is

                                                 1  ð  1  i u    1  ð  a  i u   1  e i u a

                                                       f ðuÞ e        ð1Þ e
                                                                                ffiffiffiffiffiffi
                                          Fð Þ¼ p ffiffiffiffiffiffi    du ¼ p ffiffiffiffiffiffi  du ¼ p 2  i
                                                                  2   a                a
                                                 2   1
                                                                 2 sin  a
                                                 1    e i a    e  i a     r ffiffiffi
                                                                       ;     6¼ 0
                                              ¼ p ffiffiffiffiffiffi      ¼
                                                 2      i
                                                        ffiffiffiffiffiffiffiffi
                                                       p
                                                        2=  a.
                                 For   ¼ 0, we obtain Fð Þ¼
                          (b) The graphs of f ðxÞ and Fð Þ for a ¼ 3are shown in Figures 14-1 and 14-2, respectively.
                                   f (x)                                         F(α)
                                     3                                             3
                                     2                                               2
                                     1                                             1
                                           1
                                     O                                            O
                                                              x                                       α
                          _   _   _                                    _ p  _ 2p/3  _ p/3  p/3  2p/3  p
                           3   2   1      1   2   3
                                                                                  _
                                                                                   1
                                        Fig. 14-1                                 Fig. 14-2
   370   371   372   373   374   375   376   377   378   379   380