Page 379 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 379

370                             FOURIER INTEGRALS                         [CHAP. 14

                                             L  sin  v                0  sin  v
                                            ð                        ð
                     14.9. Prove that:  (a) lim     dv ¼  ;   ðbÞ lim        dv ¼ .
                                         !1  0  v       2         !1   L  v       2
                                               ð L  sin  v   ð  L  sin y  ð 1  sin y
                          (a)Let  v ¼ y. Then lim     dv ¼ lim     dy ¼      dy ¼  by Problem 12.29, Chap. 12.
                                             !1  0  v      !1  0  y     0  y     2
                                                  0  sin  v       L  sin y
                                                 ð              ð
                              Let  v ¼ y.  Then lim      dv ¼ lim          :
                          ðbÞ                                         dy ¼
                                               !1   L  v     !1  0  y     2
                     14.10. Riemann’s theorem states that if FðxÞ is piecewise continuous in ða; bÞ, then
                                                            b
                                                           ð
                                                       lim   FðxÞ sin  xdx ¼ 0
                                                        !1  a
                          with a similar result for the cosine (see Problem 14.32).  Use this to prove that
                                   L       sin  v
                                  ð
                          ðaÞ lim   f ðx þ vÞ   dv ¼  f ðx þ 0Þ
                               !1  0         v      2
                                   0        sin  v
                                  ð
                          ðbÞ lim    f ðx þ vÞ   dv ¼  f ðx   0Þ
                               !1   L         v      2
                          where f ðxÞ and f ðxÞ are assumed piecewise continuous in ð0; LÞ and ð L; 0Þ respectively.
                                        0
                          (a)Using Problem 9(a), it is seen that a proof of the given result amounts to proving that
                                                      L               sin  v
                                                     ð
                                                  lim  f f ðx þ vÞ  f ðx þ 0Þg  dv ¼ 0
                                                   !1  0                v
                                                                           f ðx þ vÞ  f ðx þ 0Þ
                                                                                         is piecewise contin-
                                                                                  v
                              This follows at once from Riemann’s theorem, because FðvÞ¼
                              uous in ð0; LÞ since lim FðvÞ exists and f ðxÞ is piecewise continuous.
                                            n!0þ
                          (b)A proof of this is analogous to that in part (a)ifwe make use of Problem 14.9(b).
                                                               ð
                                                                1
                     14.11. If f ðxÞ satisfies the additional condition that  j f ðxÞj dx converges, prove that
                                                                 1
                                   ð                                      ð 0
                                    1       sin  v                                  sin  v
                               lim                     f ðx þ 0Þ;  ðbÞ lim                     f ðx   0Þ:
                          ðaÞ        f ðx þ vÞ   dv ¼                        f ðx þ vÞ   dv ¼
                                !1  0         v       2                !1   1         v       2
                              We have
                                                 sin  v           sin  v           sin  v
                                         ð                ð L             ð
                                         1                                 1
                                                                                        dv
                                           f ðx þ vÞ  dv ¼  f ðx þ vÞ  dv þ  f ðx þ vÞ               ð1Þ
                                         0         v       0        v      L         v
                                         ð                ð  L            ð
                                                 sin  v           sin  v           sin  v
                                         1                                 1
                                                                                        dv
                                           f ðx þ 0Þ  dv ¼  f ðx þ 0Þ  dv þ  f ðx þ 0Þ               ð2Þ
                                         0         v      0         v      L         v
                          Subtracting,
                                   ð                         ð L
                                    1                sin  v                   sin  v
                                                                                   dv
                                     f f ðx þ vÞ  f ðx þ 0Þg  dv ¼  f f ðx þ vÞ  f ðx þ 0Þg
                                    0                 v       0                 v
                                                               ð                ð
                                                                1      sin  v    1      sin  v
                                                                                             dv
                                                             þ   f ðx þ vÞ  v  dv    f ðx þ 0Þ  v
                                                                L                L
                              Denoting the integrals in (3)by I; I 1 ; I 2 , and I 3 , respectively, we have I ¼ I 1 þ I 2 þ I 3 so that
                                                         jIj @ jI 1 jþjI 2 jþjI 3 j                  ð4Þ
                                                    ð                   ð
                                                     1                 1  1
                                                             sin  v
                          Now                  jI 2 j @            dv @   j f ðx þ vÞj dv
                                                         f ðx þ vÞ  v
                                                    L                  L L
   374   375   376   377   378   379   380   381   382   383   384