Page 383 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 383

374                             FOURIER INTEGRALS                         [CHAP. 14

                                                                    2
                                                               @U  @ U
                          (b)Prove directly that the function in (a)satisfies  ¼  and the conditions of Problem 14.13.
                                                               @t   @x 2

                                                                          1 jxj < 1
                                                                          0 jxj > 1
                     14.27. Verify the convolution theorem for the functions f ðxÞ¼ gðxÞ¼  .
                     14.28. Establish equation (4), Page 364, from equation (3), Page 364.
                     14.29. Prove the result (12), Page 365.
                                            ð                        ð
                                         1   1     i u             1  1     i v
                           Hint: If  Fð Þ¼ p ffiffiffiffiffiffi  f ðuÞ e  du and  Gð Þ¼ p ffiffiffiffiffiffi  gðvÞ e  dv,  then
                                          2   1
                                                                   2   1
                                                          1  ð  1  ð 1
                                                                  e i ðuþvÞ f ðuÞ gðvÞ du dv
                                                 Fð Þ Gð Þ¼
                                                                 1
                                                          2   1

                          Now make the transformation u þ v ¼ x:
                                                          1  ð  1  ð 1  i x
                                                                  e  f ðuÞ gðx   uÞ du dx
                                                          ffiffiffi
                                                Fð Þ Gð Þ¼ p
                                                             1
                                                                 1
                          Define
                                                 1  ð  1
                                                      f ðuÞ gðx   uÞ du
                                           f   g ¼ p ffiffiffi            ð f   g is a function of xÞ
                                                     1
                          then
                                                             1  ð 1  ð 1  i x
                                                                      e  f   gdx
                                                    Fð Þ Gð Þ¼ p ffiffiffi
                                                                    1
                                                                 1
                              Thus, Fð Þ Gð Þ is the Fourier transform of the convolution f   g and conversely as indicated in (13)
                          f   g is the Fourier transform of Fð Þ Gð Þ.
                     14.30. If Fð Þ and Gð Þ are the Fourier transforms of f ðxÞ and gðxÞ respectively, prove (by repeating the pattern of
                          Problem 14.29) that
                                                    ð             ð
                                                     1             1
                                                                      f ðxÞ gðxÞ dx
                                                       Fð Þ Gð Þ d  ¼
                                                      1             1
                          where the bar signifies the complex conjugate.  Observe that if G is expressed as in Problem 14.29 then
                                                            1  ð 1
                                                                e  i x  f ðuÞ   gðvÞ dv
                                                                       g
                                                      G Gð Þ¼     1
                     14.31. Show that the Fourier transform of gðu   xÞ is e i x , i.e.,
                                                            1  ð 1
                                                   e i x  Gð Þ¼ p ffiffiffi    1  e i u  f ðuÞ gðu   xÞ du
                          Hint: See Problem 14.29.  Let v ¼ u   x.

                     14.32. Prove Riemann’s theorem (see Problem 14.10).
   378   379   380   381   382   383   384   385   386   387   388