Page 386 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 386

CHAP. 15]                  GAMMA AND BETA FUNCTIONS                             377


                        This factorial representation for positive integers suggests the possibility that
                                                             k! k x
                                        ðx þ 1Þ¼ x! ¼ lim                x 6¼ 1;  2;  k              ð6Þ
                                                    k!1 ðx þ 1Þ ... ðx þ kÞ
                     Gauss verified this identification back in the nineteenth century.
                                                                                 x
                                                                              k! k
                                                                                       .Itis called Gauss’s
                        This infinite product is symbolized by  ðx; kÞ, i.e.,  ðx; kÞ¼
                                                                         ðx þ 1Þ   ðx þ kÞ
                     function and through this symbolism,
                                                      ðx þ 1Þ¼ lim  ðx; kÞ                           ð7Þ
                                                              k!1
                                         1
                        The expression for  (which has some advantage in developing the derivative of  ðxÞ) results as
                                         ðxÞ
                     follows.  Put (6a)in the form
                                                      k x                   1 1     1
                                         lim                           x 6¼  ; ; ... ;
                                                                            2 3    k
                                        k!1 ð1 þ xÞð1 þ x=2Þ ... ð1 þ x=kÞ
                     Next, introduce

                                                           1  1    1
                                                   
 k ¼ 1 þ þ þ       ln k
                                                           2  3    k
                     Then

                                                          
 ¼ lim 
 k
                                                             k!1
                     is Euler’s constant.  This constant has been calculated to many places, a few of which are
                     
   0:57721566 ... .
                                  x
                        By letting k ¼ e x ln k  ¼ e x½ 
 k þ1þ1=2þ   þ1=kŠ , the representation (6) can be further modified so that
                                                  e x  e x=2    e x=k    
x  Y  
x x ln k     x
                                                                           1
                                           
x
                                 ðx þ 1Þ¼ e  lim                     ¼ e     e  e   = 1 þ
                                             k!1 1 þ x 1 þ x=2  1 þ x=k                  k
                                                                          k¼1
                                          1
                                         Y   x                  1   2   3     k  x
                                            k k!ðk þ xÞ¼ lim
                                       ¼                                       x ¼ lim  ðx; kÞ       ð8Þ
                                          ¼1           k!1 ðx þ 1Þðx þ 2Þ   ðx þ kÞ  k!1
                     Since  ðx þ 1Þ¼ x ðxÞ;
                                     1     
x    1 þ x 1 þ x=2  1 þ x=k  
x  Y         x=k
                                                                           1
                                        ¼ xe  lim                    ¼ xe    ð1 þ x=kÞ e             ð9Þ
                                             k!1 e x   e x=2    e x=k
                                                                            ¼1
                                     ðxÞ
                        Another result of special interest emanates from a comparison of  ðxÞ ð1   xÞ with the ‘‘famous’’
                     formula

                                       x          1      1          1       Y          2
                                                                             1
                                          ¼ lim
                                     sin  x         2        2          2  ¼   f1  ðx=kÞ g          ð10Þ
                                            k!1 1   x 1  ðx=2Þ
                                                                 ð1   x=kÞ   ¼1
                     (See Differential and Integral Calculus,byR. Courant (translated by E. J. McShane), Blackie & Son
                     Limited.)
                                                    1
                         ð1   xÞ is obtained from  ð yÞ¼  ð y þ 1Þ by letting y ¼ x, i.e.,
                                                    y
                                                  1
                                                              or
                                          ð xÞ¼    ð1   xÞ          ð1   xÞ¼ x ð xÞ
                                                  x
   381   382   383   384   385   386   387   388   389   390   391