Page 389 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 389

380                        GAMMA AND BETA FUNCTIONS                       [CHAP. 15



                     15.2. Evaluate each of the following.
                                     5!  5   4   3   2
                                                 ¼ 30
                               ð6Þ
                                    2   2!  2   2
                          ðaÞ     ¼    ¼
                              2 ð3Þ
                               5   3  3  3  1  1  3
                                     2
                                             2
                               2
                                          2
                               ð Þ  2   ð Þ  2     ð Þ
                               1     1     1    4
                          ðbÞ    ¼     ¼      ¼
                               2     2     2
                               ð Þ   ð Þ   ð Þ
                                                               16
                               ð3Þ  ð2:5Þ   2!ð1:5Þð0:5Þ  ð0:5Þ
                                                              315
                          ðcÞ         ¼                      ¼
                                ð5:5Þ  ð4:5Þð3:5Þð2:5Þð1:5Þð0:5Þ  ð0:5Þ
                                8    5 2  2
                                3    3 3  3
                              6  ð Þ  6ð Þð Þ  ð Þ  4
                                2       2    3
                          ðdÞ     ¼         ¼
                                3       3
                              5  ð Þ  5  ð Þ
                     15.3. Evaluate each integral.
                              ð
                               1  3  x
                                x e  dx ¼  ð4Þ¼ 3! ¼ 6
                          ðaÞ
                              0
                              ð
                               1  6  2x
                                x e  dx:  Let 2x ¼ 7.  Then the integral becomes
                          ðbÞ
                              0
                                                  y
                                                1   6   y dy  1  1           6!  45
                                               ð             ð
                                                                6  y
                                                     e          y e      ð7Þ
                                                  2     2  ¼  2 7   dy ¼  2 7  ¼  2 7  ¼  8
                                                0             0
                                     1   p ffiffiffi
                                     2
                     15.4. Prove that  ð Þ¼   .
                                   ð
                                    1
                                                         2
                               1     x  1=2  x  dx.  Letting x ¼ u this integral becomes
                                         e
                               2
                               ð Þ¼
                                    0
                                                        ffiffiffi
                                           ð           p
                                            1   2
                                          2   e  u  du ¼ 2  ¼  p ffiffiffi
                                                                using Problem 12.31, Chapter 12
                                            0          2
                          This result also is described in equation (11a,b)earlier in the chapter.
                     15.5. Evaluate each integral.
                              ð
                               1
                                 ffiffiffi  y 2       3
                                 y e  dy.  Letting y ¼ x,the integral becomes
                                p
                          ðaÞ
                              0
                                                1=3  x 1
                                           ð                    ð                   p ffiffiffi
                                            1 p ffiffiffiffiffiffiffiffi      1  1           1  1
                                                                      e
                                               x  e    x   2=3  dx ¼  x  1=2  x  dx ¼     ¼
                                            0        3        3 0            3  2    3
                              ð         ð            ð
                               1   4x 2  1      2     1   ð4ln3Þz 2       2
                                3         ðe ln 3 ð 4x Þ  e   dz.  Let ð4ln 3Þz ¼ x and the integral becomes
                          ðbÞ       dx ¼     Þ    dz ¼
                              0          0            0
                                                     !
                                         ð        1=2          ð                     p ffiffiffi
                                          1   x  x         1    1   1=2  x   ð1=2Þ
                                            e  d p ffiffiffiffiffiffiffiffiffiffiffi ¼ p ffiffiffiffiffiffiffiffiffiffiffi  x  e  dx ¼ p ffiffiffiffiffiffiffiffiffiffiffi ¼ p ffiffiffiffiffiffiffiffi
                                          0       4ln 3  2 4ln 3 0          2 4ln 3  4 ln 3
                              ð 1  dx
                                                              u
                          (c)   p ffiffiffiffiffiffiffiffiffiffiffiffi :  Let   ln x ¼ u. Then x ¼ e . When x ¼ 1; u ¼ 0; when x ¼ 0; u ¼1. The integral
                               0    ln x
                              becomes
                                                 ð 1  u   ð  1
                                                    e

                                                             u  1=2  u        p ffiffiffi
                                                                 e
                                                    p ffiffiffi du ¼     du ¼  ð1=2Þ¼
                                                  0  u     0
                                  ð
                                   1
                                      m  ax n
                     15.6. Evaluate  x e   dx where m; n; a are positive constants.
                                   0
   384   385   386   387   388   389   390   391   392   393   394