Page 392 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 392

CHAP. 15]                  GAMMA AND BETA FUNCTIONS                             383

                               2  x dx
                              ð  2
                                 ffiffiffiffiffiffiffiffiffiffiffi :  Letting x ¼ 2v; the integral becomes
                                p
                           ðbÞ
                               0  2   x
                                       1              1
                                      ð    2         ð                         p ffiffiffi         p ffiffiffi
                                    p ffiffiffi  v      p ffiffiffi  2    1=2    p ffiffiffi    4 2  ð3Þ  ð1=2Þ  64 2
                                                                           1
                                   4 2  p ffiffiffiffiffiffiffiffiffiffiffi dv ¼ 4 2  v ð1   vÞ  dv ¼ 4 2 Bð3; Þ¼  ¼
                                                                           2
                                       0  1   v       0                           ð7=2Þ     15
                              ð  a  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi         ffiffiffi
                                   2
                                       2
                                y 4  a   y dy:    2   2      p x; the integral becomes
                           ðcÞ              Letting y ¼ a x or y ¼
                               0
                                             1                           6            a 6
                                            ð
                                                             6
                                           a 6  x 3=2 ð1   xÞ 1=2  dx ¼ a Bð5=2; 3=2Þ¼  a  ð5=2Þ  ð3=2Þ  ¼
                                             0                               ð4Þ     16
                                   ð  =2
                     15.13. Show that  sin 2u 1    cos 2v 1    d  ¼   ðuÞ  ðvÞ  u; v > 0.
                                    0                    2  ðu þ vÞ
                              This follows at once from Problems 15.10 and 15.11.
                                       ð   =2          ð  =2               ð
                                                                 5
                                                                                4
                                            6
                                                            4
                     15.14. Evaluate  (a)  sin   d ;  ðbÞ  sin   cos   d ;  ðcÞ  cos   d .
                                       0                0                   0
                           ðaÞ Let 2u   1 ¼ 6; 2v   1 ¼ 0; i.e., u ¼ 7=2; v ¼ 1=2; in Problem 15.13:
                                                                           5
                                 Then the required integral has the value   ð7=2Þ  ð1=2Þ  :
                                                                            32
                                                                          ¼
                                                                  2  ð4Þ
                                                                                         8
                           ðbÞ Letting 2u   1 ¼ 4; 2v   1 ¼ 5; the required integral has the value   ð5=2Þ  ð3Þ  :
                                                                                        315
                                                                                       ¼
                                                                               2  ð11=2Þ
                                                =2
                                              ð
                                                    4
                           ðcÞ The given integral ¼ 2  cos   d :
                                               0
                                                                                              3
                                  Thus letting 2u   1 ¼ 0; 2v   1 ¼ 4inProblem 15.13, the value is  2  ð1=2Þ  ð5=2Þ  ¼  .
                                                                                               8
                                                                                     2  ð3Þ
                                  =2           =2
                                ð            ð
                                      p            p         1   3   5    ð p   1Þ
                     15.15. Prove   sin   d  ¼  cos   d  ¼ðaÞ                if p is an even positive integer,
                                 0           0                 2   4   6     p  2
                           (b)  2   4   6    ð p   1Þ  is p is an odd positive integer.
                                1   3   5     p
                              From Problem 15.13 with 2u   1 ¼ p; 2v   1 ¼ 0, we have
                                                      ð  =2        1       1
                                                           p      ½ ð p þ 1ފ  ð Þ
                                                                   2
                                                                           2
                                                                     1
                                                         sin   d  ¼
                                                       0          2  ½ ð p þ 2ފ
                                                                     2
                           (a)If p ¼ 2r,the integral equals
                                     1  1      1   3   1  1   1  ð2r   1Þð2r   3Þ     1    1   3   5     ð2r   1Þ
                                     2  2      2   2   2  2   2
                                  ðr þ Þ  ð Þ  ðr   Þðr   Þ     ð Þ   ð Þ
                                                2rðr   1Þ    1     2rð2r   2Þ     2  2  2   4   6     2r  2
                                          ¼                    ¼                 ¼
                                  2  ðr þ 1Þ
                           (b)If p ¼ 2r þ 1, the integral equals
                                                    1              p       2   4   6     2r
                                                                    ffiffiffi
                                                    2
                                             ðr þ 1Þ  ð Þ  rðr   1Þ    1
                                                   3  ¼    1    1  1  p
                                                                      ffiffiffi ¼
                                                   2       2    2  2
                                              2  ðr þ Þ  2ðr þ Þðr   Þ      1   3   5     ð2r þ 1Þ
                                            ð   =2     ð   =2
                                                 p
                                                            p
                                  In both cases  sin   d  ¼  cos   d ,as seen by letting   ¼  =2    .
                                            0           0
   387   388   389   390   391   392   393   394   395   396   397