Page 395 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 395

386                        GAMMA AND BETA FUNCTIONS                       [CHAP. 15



                          so that (2)becomes
                                                         ð 1
                                          1  ð =2Þ  ð
=2 þ 1Þ  ð =2Þ 1  ð þ
Þ=2
                                                            u              du
                                       I ¼                       ð1   uÞ                             ð3Þ
                                          4
  ½ð  þ 
Þ=2 þ 1Š  u¼0
                                          1  ð =2Þ  ð
=2 þ 1Þ  ð =2Þ  ½ð  þ 
Þ=2 þ 1Š   ð =2Þ  ð =2Þ  ð
=2Þ
                                        ¼                                  ¼
                                          4
  ½ð  þ 
Þ=2 þ 1Š   ½ð  þ   þ 
Þ=2 þ 1Š  8  ½ð  þ  þÞ=2 þ 1Š
                          where we have used ð
=2Þ  ð
=2Þ¼  ð
=2 þ 1Þ.
                              The integral evaluated here is a special case of the Dirichlet integral (20), Page 379. The general case
                          can be evaluated similarly.
                                                                         2
                                                                                           2 2 2
                                                                    2
                                                                 2
                                                             2
                     15.22. Find the mass of the region bounded by x þ y þ z ¼ a if the density is   ¼ x y z .
                                               ðð ð
                                                   2 2 2
                              The required mass ¼ 8  x y z dx dy dz, where V is the region in the first octant bounded by the
                                                V
                                           2
                                    2
                                 2
                                        2
                          sphere x þ y þ z ¼ a and the coordinate planes.
                              In the Dirichlet integral (20), Page 379, let b ¼ c ¼ a; p ¼ q ¼ r ¼ 2 and   ¼   ¼ 
 ¼ 3.  Then the
                          required result is
                                                    3
                                                       3
                                                   a   a   a 3   ð3=2Þ  ð3=2Þ  ð3=2Þ  4 s 9
                                                                              945
                                                 8                          ¼
                                                    2   2   2  ð1 þ 3=2 þ 3=2 þ 3=2Þ
                     MISCELLANEOUS PROBLEMS
                                   ð                   2
                                    1 p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                           4
                                                    ffiffiffiffiffiffi .
                     15.23. Show that  1   x dx ¼  f ð1:4Þg
                                                   p
                                    0             6 2
                                  4
                              Let x ¼ y.  Then the integral becomes
                                                                           ffiffiffi
                                            1  ð 1   3=4  1=2  1  ð1=4Þ  ð3=2Þ  p    f ð1=4Þg 2
                                               y  ð1   yÞ  dy ¼         ¼
                                            4 0              4    ð7=4Þ    6  ð1:4Þ  ð3=4Þ
                                                                    p ffiffiffi
                              From Problem 15.17 with p ¼ 1=4;  ð1=4Þ  ð3=4Þ¼   2 so that the required result follows.
                     15.24. Prove the duplication formula 2 2p 1  1  p    ð2pÞ.
                                                                     ffiffiffi
                                                                2
                                                        ð pÞ  ð p þ Þ¼
                                    ð  =2        ð  =2
                                         2p           2p
                              Let I ¼  sin xdx; J ¼  sin 2xdx.
                                     0            0
                                                  ð p þ Þ
                                                     1
                                                        ffiffiffi
                                                       p
                                      1     1 1      2
                                      2     2 2
                              Then I ¼ Bð p þ ; Þ¼
                                                 2  ð p þ 1Þ
                              Letting 2x ¼ u,we find
                                                       ð          ð  =2
                                                                       2p
                                                       1   2p        sin udu ¼ I
                                                       2
                                                   J ¼   sin udu ¼
                                                        0          0
                                                 ð  =2               ð  =2
                                                             2p
                                                                          2p
                                                                               2p
                              But             J ¼   ð2 sin x cos xÞ dx ¼ 2 2p  sin x cos xdx
                                                  0                   0
                                                                  2 2p 1   1  2
                                                                           2
                                                ¼ 2 2p 1  1    1     f ð p þ Þg
                                                          2    2
                                                     Bð p þ ; p þ Þ¼
                                                                     ð2p þ 1Þ
                              Then since I ¼ J,
                                                           1
                                                             ffiffiffi
                                                       ð p þ Þ    2 2p 1  1  2
                                                            p
                                                                         2
                                                           2        f ð p þ Þg
                                                               ¼
                                                       2p  ð pÞ    2p  ð2pÞ
   390   391   392   393   394   395   396   397   398   399   400