Page 398 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 398

CHAP. 15]                  GAMMA AND BETA FUNCTIONS                             389

                                         xdx              y dy
                                      ð                ð   2
                                      1                 1
                     15.45. Prove that (a)  6  ¼ p ;  ðbÞ     4  ¼ p ffiffiffi.
                                                 ffiffiffi
                                      0 1 þ x  3 3      0 1 þ y  2 2
                                   ð     2x
                                    1   e           2
                     15.46. Prove that      dx ¼ p ffiffiffi    where a; b > 0.
                                     1 ae 3x  þ b  3 3 a 2=3 1=3
                                                      b
                                   ð     2x
                                    1   e        2
                     15.47. Prove that  3x   dx ¼ p ffiffiffi
                                     1 ðe  þ 1Þ  9 3
                           [Hint: Differentiate with respect to b in Problem 15.46.]
                     15.48. Use the method of Problem 12.31, Chapter 12, to justify the procedure used in Problem 15.11.
                     DIRICHLET INTEGRALS
                                                                                                     xy.
                                                                                                    p ffiffiffiffiffiffi
                     15.49. Find the mass of the region in the xy plane bounded by x þ y ¼ 1; x ¼ 0; y ¼ 0ifthe density is   ¼
                           Ans:   =24
                                                                 x 2  y 2  z 2
                     15.50. Find the mass of the region bounded by the ellipsoid  þ  þ  ¼ 1ifthe density varies as the square of
                                                                 a 2  b 2  c 2
                           the distance from its center.
                                 abck
                                             2
                                      2
                                         2
                           Ans:     ða þ b þ c Þ; k ¼ constant of proportionality
                                 30
                     15.51. Find the volume of the region bounded by x 2=3  þ y 2=3  þ z 2=3  ¼ 1.
                           Ans:  4 =35
                     15.52. Find the centroid of the region in the first octant bounded by x 2=3  þ y 2=3  þ z 2=3  ¼ 1.
                           Ans:    x x ¼   y ¼   z ¼ 21=128
                                      z
                                   y
                                                                                                    3
                                                                         m
                                                                     m
                                                                                                      3
                                                              m
                                                                  m
                     15.53. Show that the volume of the region bounded by x þ y þ z ¼ a , where m > 0, is given by  8f ð1=mÞg  a .
                                                                                               2
                                                                                             3m  ð3=mÞ
                                                                                       m
                                                                           m
                                                                               m
                                                                                  m
                     15.54. Show that the centroid of the region in the first octant bounded by x þ y þ z ¼ a , where m > 0, is given
                           by
                                                         y  z  3  ð2=mÞ  ð3=mÞ  a
                                                        x x ¼   y ¼   z ¼
                                                               4  ð1=mÞ  ð4=mÞ
                     MISCELLANEOUS PROBLEMS
                                   ð b
                                               q
                                          p
                     15.55. Prove that  ðx   aÞ ðb   xÞ dx ¼ðb   aÞ  pþqþ1  Bð p þ 1; q þ 1Þ where p >  1; q >  1 and b > a.
                                    a
                           [Hint: Let x   a ¼ðb   aÞy:]
                                     ð 3    dx          ð  7 p
                                                            ð7   xÞðx   3Þ dx.
                     15.56. Evaluate  (a)  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ;  ðbÞ  4  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                      1  ðx   1Þð3   xÞ  3
                                                2
                           Ans:  ðaÞ  ;  ðbÞ  2 f ð1=4Þg
                                           3
                                             ffiffiffi
                                            p
                                        2  p p
                                             ffiffiffi ffiffiffi
                                              3
                                               2
                     15.57. Show that  f ð1=3Þg  ¼ p ffiffiffi .
                                              3
                                     ð1=6Þ
                                          1  ð 1  x u 1  þ x v 1
                                                  uþv
                     15.58. Prove that Bðu; vÞ¼      dx where u; v > 0.
                                          2 0 ð1 þ xÞ
                           [Hint: Let y ¼ x=ð1 þ xÞ:Š
   393   394   395   396   397   398   399   400   401   402   403