Page 393 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 393

384                        GAMMA AND BETA FUNCTIONS                       [CHAP. 15

                                        =2               =2
                                      ð                ð                   ð 2
                                            6
                                                            3
                                                                                 8
                                                                 2
                     15.16. Evaluate  (a)  cos   d ;  ðbÞ  sin   cos   d ;  ðcÞ  sin   d .
                                       0                0                   0
                                                           1   3   5  5
                          (a)From Problem 15.15 the integral equals  [compare Problem 15.14(a)].
                                                           2   4   6  ¼  32
                          (b) The integral equals
                                      ð  =2             ð   =2     ð  =2       2    2   4  2
                                           3      2           3         5
                                         sin  ð1   sin  Þ d  ¼  sin   d     sin   d  ¼  1   3     1   3   5  ¼  15
                                       0                 0          0
                                 The method of Problem 15.14(b)can also be used.
                                                  ð  =2         1   3   5   7      35
                                                       8
                              The given integral equals 4  sin   d  ¼ 4       :
                          ðcÞ                                  2   4   6   8 2  ¼  64
                                                   0
                                   x
                                ð   p 1
                                 1
                     15.17. Given      dx ¼     , show that  ð pÞ  ð1   pÞ¼  , where 0 < p < 1.
                                 0 1 þ x    sin p                      sin p
                                     x            y
                              Letting   ¼ y or x ¼  ,the given integral becomes
                                    1 þ x       1   y
                                                1
                                               ð
                                                 y  p 1  ð1   yÞ  p  dy ¼ Bð p; 1   pÞ¼  ð pÞ  ð1   pÞ
                                                0
                          and the result follows.
                                  ð
                                      dy
                                   1
                     15.18. Evaluate      .
                                   0 1 þ y 4
                                                                                p
                                                          1  ð  1  x  3=4        2 ffiffiffi
                                 4
                                                                                                      1
                              Let y ¼ x. Then the integral becomes  dx ¼     ¼     by Problem 15.17 with p ¼ .
                                                          4 0 1 þ x   4 sinð =4Þ  4                   4
                                                             2
                              The result can also be obtained by letting y ¼ tan  .
                                   ð
                                    2 p ffiffiffiffiffiffiffiffiffiffiffiffiffi  16
                                       3    3
                     15.19. Show that  x 8   x dx ¼ p ffiffiffi.
                                    0             9 3
                                    3
                              Letting x   8y or x ¼ 2y 1=3 ,the integral comes
                                      ð  1  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ð 1
                                                     2  2=3
                                                                              8
                                                                                 2 4
                                        2y 1=3     3  8ð1   yÞ   y  dy ¼  8  y  1=3  ð1   yÞ 1=3  dy ¼ Bð ; Þ
                                       0             3       3  0             3  3 3
                                                                2  4
                                                                3  3     1  2
                                                             8  ð  ð Þ  8       8        16
                                                                         3
                                                                            3
                                                           ¼         ¼   ð Þ  ð Þ¼     ¼ p ffiffiffi
                                                             3   ð2Þ  9         9 sin  =3  9 3
                     STIRLING’S FORMULA
                                                              p ffiffiffiffiffiffiffiffi  n  n
                                                                2 n n e  approximately.
                     15.20. Show that for large positive integers n; n! ¼
                                             ð
                                              1  z 1  t
                                               t  e dt.  Let lfz ¼ x þ 1then
                              By definition  ðzÞ¼
                                              0
                                                     ð         ð           ð
                                                      1         1           1
                                                        x  t        tþln t x   tþx ln t
                                              ðx þ 1Þ¼  t e dt ¼  e    dt ¼  e     dt                ð1Þ
                                                      0         0           0
                              For a fixed value of x the function x ln t   t has a relative maximum for t ¼ x (as is demonstrated by
                          elementary ideas of calculus). The substutition t ¼ x þ y yields
                                                       ð                  ð
                                                        1                  1     y
                                                                      x  x
                                             ðx þ 1Þ¼ e  x  e x lnðxþyÞ y  dy ¼ x e  e x lnð1þ Þ y  dy  ð2Þ
                                                                                 x
                                                         x                  x
   388   389   390   391   392   393   394   395   396   397   398