Page 396 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 396

CHAP. 15]                  GAMMA AND BETA FUNCTIONS                             387


                           and the required result follows.  (See Problem 15.74, where the duplication formula is developed for the
                           simpler case of integers.)
                                     =2    d
                                   ð                      2
                     15.25. Show that  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼  f ð1=4Þg
                                                        ffiffiffi .
                                                      p
                                               2
                                            1
                                    0   1   sin      4
                                            2
                              Consider
                                                  d          1=2             ð Þ    f ð Þg
                                             ð  =2     ð  =2                  1  p ffiffiffi  1  2
                                                          cos       1  1 1    4       4
                                                                    2
                                                                       4 2
                                          I ¼   p ffiffiffiffiffiffiffiffiffiffi ¼    d  ¼ Bð ; Þ¼  3  ¼ p ffiffiffiffiffiffi
                                              0  cos    0                    2  ð Þ  2 2
                                                                                4
                           as in Problem 15.23.
                                     ð  =2  d   ð  =2   d         ð  =2   d
                                                                       ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi :
                                        p         p                   p
                                                             2
                              But I ¼    ffiffiffiffiffiffiffiffiffiffi ¼  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼  2
                                                      2
                                      0  cos    0  cos  =2   sin  =2  0  1   2 sin  =2
                                                                           ð   =2
                                    p ffiffiffi                               p ffiffiffi    d
                              Letting  2 sin  =2 ¼ sin   in this last integral, it becomes  2  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi, from which the result
                                                                                  1
                                                                                     2
                                                                           0   1   sin
                           follows.                                               2
                                      cos x
                                    ð
                                     1
                     15.26. Prove that   p  dx ¼             ; 0 < p < 1.
                                     0  x      2  ð pÞ cosð p =2Þ
                                     1    1  ð 1  p 1  xu
                              We have  ¼       u  e   du.  Then
                                     x  p   ð pÞ 0
                                                 ð             ð ð
                                                 1  cos x   1  1  1  p 1  xu
                                                    x p  dx ¼      u   e  cos xdu dx
                                                 0          ð pÞ 0  0
                                                            1  ð 1  u  p
                                                                      du
                                                            ð pÞ 0 1 þ u
                                                         ¼           2                                ð1Þ
                           where we have reversed the order of integration and used Problem 12.22, Chapter 12.
                                     2
                              Letting u ¼ v in the last integral, we have by Problem 15.17
                                           ð    p      ð  ð p 1Þ=2
                                            1  u      1  1  v
                                            0 1 þ u 2  du ¼  2 0  1 þ v  dv ¼  2 sinð p þ 1Þ =2  ¼  2cos p =2  ð2Þ
                              Substitution of (2)in (1)yields the required result.
                                  ð
                                   1
                                         2
                     15.27. Evaluate  cos x dx.
                                   0
                                                                                !
                                                         1  ð  1 cos y  1           p ffiffiffiffiffiffiffiffi
                                     2
                              Letting x ¼ y,the integral becomes  p ffiffiffi dy ¼  1  ¼  1 2   =2 by Problem 15.26.
                                                         2 0  y     2 2  ð Þ cos  =4
                                                                         2
                              This integral and the corresponding one for the sine [see Problem 15.68(a)] are called Fresnel integrals.
                                                 Supplementary Problems
                     THE GAMMA FUNCTION
                     15.28. Evaluate  (a)   ð7Þ  ;  ðbÞ   ð3Þ  ð3=2Þ  ;  ðcÞ  ð1=2Þ  ð3=2Þ  ð5=2Þ.
                                     2  ð4Þ  ð3Þ     ð9=2Þ
                           Ans.  ðaÞ 30;  ðbÞ 16=105;  ðcÞ  3 8    3=2
   391   392   393   394   395   396   397   398   399   400   401