Page 400 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 400

CHAP. 15]                  GAMMA AND BETA FUNCTIONS                             391


                     15.72. Obtain (12)on Page 378 from the result (4)of Problem 15.20.
                                       3  p ffiffi
                           [Hint: Expand e v =ð3 nÞ  þ      in a power series and replace the lower limit of the integral by  1.]
                     15.73. Obtain the result (15)on Page 378.
                                               1
                                                 ðx þ !Þ,thus ln  ðxÞ¼ ln  ðx þ 1Þ  ln x, and
                                              x
                           [Hint: Observe that  ðxÞ¼
                                                                        1
                                                           0     0
                                                           ðxÞ    ðx þ 1Þ
                                                              ¼
                                                                        x
                                                           ðxÞ   ðx þ 1Þ
                           Furthermore, according to (6) page 377.
                                                                     k! k x
                                                      ðx þ !Þ¼ lim
                                                             k!1 ðx þ 1Þ    ðx þ kÞ
                              Now take the logarithm of this expression and then differentiate. Also recall the definition of the Euler
                           constant, 
.
                     15.74. The duplication formula (13a) Page 378 is proved in Problem 15.24.  For further insight, develop it for
                           positive integers, i.e., show that
                                                               1
                                                                           ffiffiffi
                                                       2 2n 1  ðn þ Þ  ðnÞ¼  ð2nÞ
                                                                         p
                                                               2
                                         1
                           Hint: Recall that  ð Þ¼  ,thenshow that
                                         2

                                                    1
                                                                                  :
                                                 ðn þ Þ¼    2n þ 1Þ  ð2n   1Þ     5   3   1 p ffiffiffi
                                                    2       2   ¼       2 n
                           Observe that
                                                             ð2nÞ!
                                                    ð2n þ 1Þ    ¼ð2n   1Þ    5   3   1
                                                              n
                                                    n      ¼  2 n!
                                                   2  ðn þ 1Þ
                           Now substitute and refine.
   395   396   397   398   399   400   401   402   403   404   405