Page 397 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 397

388                        GAMMA AND BETA FUNCTIONS                       [CHAP. 15


                                     ð              ð             ð
                                      1             1              1      2
                                         4  x
                                                                      2  2x
                                                       6  3x
                     15.29. Evaluate  (a)  x e  dx;  ðbÞ  x e  dx;  ðcÞ  x e  dx:
                                      0             0              0
                                                   ffiffiffiffiffiffi
                                                  p
                                          80       2
                          Ans.  ðaÞ 24;  ðbÞ  ;  ðcÞ
                                         243       16
                                  ð            ð               ð
                                   1   2        1  p ffiffiffi  p ffiffi  1     5
                                                                   3  2y
                     15.30. Find  (a)  e  x  dx;  ðbÞ  4  x e   x  dx;  ðcÞ  y e  dy.
                                   0            0               0
                                             p
                                              ffiffiffi
                                            3
                                     1
                                  1   ð Þ;     ;      ð4=5Þ
                                  3  3       2       5 16
                          Ans. ðaÞ       ðbÞ      ðcÞ  p ffiffiffiffiffi
                                                       5
                                             ffiffiffi
                                     e
                                  ð  1  st  r
                     15.31. Show that  p ffiffi dt ¼  ;  s > 0.
                                   0   t     8
                                         1
                                        ð    1   v 1
                                          ln     dx;  v > 0.
                     15.32. Prove that  ðvÞ¼  x
                                         0
                                     ð 1           ð 1            ð  1 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                         3
                                          4
                     15.33. Evaluate  (a)  ðln xÞ dx;  ðbÞ  ðx ln xÞ dx;  ðcÞ  3  lnð1=xÞ dx.
                                      0             0             0
                                                        1
                          Ans:  ðaÞ 24;  ðbÞ  3=128;  ðcÞ  1 3   ð Þ
                                                        3
                                                                     ffiffiffi
                     15.34. Evaluate  (a)  ð 7=2Þ;  ðbÞ  ð 1=3Þ.  Ans:  ðaÞð16  Þ=105;  ðbÞ  3  ð2=3Þ
                                                                    p
                     15.35. Prove that lim  ðxÞ¼ 1 where m ¼ 0; 1; 2; 3; ...
                                   x! m
                                                                     m m
                                                                         ffiffiffi
                                                                  ð 1Þ 2  p
                                                            1
                                                            2
                     15.36. Prove that if m is a positive interger,  ð m þ Þ¼
                                                               1   3   5     ð2m   1Þ
                                         ð
                                         1
                                           e  ln xdx is a negative number (it is equal to  
, where 
 ¼ 0:577215 ... is called
                                    0        x
                     15.37. Prove that   ð1Þ¼
                                         0
                          Euler’s constant as in Problem 11.49, Page 296).
                     THE BETA FUNCTION
                                                                                                   p
                     15.38. Evaluate  (a) Bð3; 5Þ;  ðbÞ Bð3=2; 2Þ;  ðcÞ Bð1=3; 2=3Þ:  Ans:  ðaÞ 1=105;  ðbÞ 4=15;  ðcÞ 2 = 3 ffiffiffi
                                   1                1 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2
                                  ð                ð                ð
                                           3
                                                                          2 3=2
                                     2
                     15.39. Find  (a)  x ð1   xÞ dx;  ðbÞ  ð1   xÞ=x dx;  ðcÞ  ð4   x Þ  dx.
                                   0                0                0
                          Ans:  ðaÞ 1=60;  ðbÞ  =2;  ðcÞ 3
                                     ð 4                ð  3  dx
                     15.40. Evaluate  (a)  u 3=2 ð4   uÞ 5=2  du;  ðbÞ  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi :  Ans:  ðaÞ 12 ;  ðbÞ
                                      0                  0  3x   x 2
                                   a   dy
                                   ð               2
                                                 ffiffiffiffiffiffi :
                     15.41. Prove that  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼  f ð1=4Þg
                                       4
                                                p
                                   0  a   y 4  4a 2
                                     ð  =2              ð 2
                                                             6
                                               4
                                          4
                     15.42. Evaluate  (a)  sin   cos   d ;  ðbÞ  cos   d :  Ans:  ðaÞ 3 =256;  ðbÞ 5 =8
                                      0                  0
                                     ð             ð  =2
                                         5
                                                        5
                                                            2
                     15.43. Evaluate  (a)  sin   d ;  ðbÞ  cos   sin   d :  Ans:  ðaÞ 16=15;  ðbÞ 8=105
                                      0            0
                                   ð
                                                  ffiffiffi
                                    =2 p
                                       ffiffiffiffiffiffiffiffiffiffi  p
                     15.44. Prove that  tan   d  ¼  = 2.
                                   0
   392   393   394   395   396   397   398   399   400   401   402