Page 394 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 394

CHAP. 15]                  GAMMA AND BETA FUNCTIONS                             385


                              To this point the analysis has been rigorous. The following formal steps can be made rigorous by
                           incorporating appropriate limiting procedures; however, because of the difficulty of the proofs, they shall be
                           omitted.
                              In (2)introduce the logarithmic expansion
                                                          y   y  y    y
                                                                  2    3
                                                          x   x  2x  3x
                                                     ln 1 þ  ¼     2  þ  3   þ                        ð3Þ
                           and also let
                                                            x v;        x dv
                                                           p ffiffiffi      p ffiffiffi
                                                        y ¼       dy ¼
                           Then
                                                                 ð
                                                                 1    2  3  p ffiffi
                                                           x  x
                                                               ffiffiffi
                                                  ðx þ 1Þ¼ x e  p x  e  v =2þðv =3Þ x      dv         ð4Þ
                                                                  x
                           For large values of x
                                                               ð
                                                                1   2         p ffiffiffiffiffiffiffiffi
                                                                           x  x
                                                         x  x
                                                              x
                                                 ðx þ 1Þ  x e  p ffiffiffi  e  v =2  dv ¼ x e  2 x
                                                                 x
                           When x is replaced by integer values n,then the Stirling relation
                                                                    ffiffiffiffiffiffiffiffi
                                                                   p    x  x
                                                                    2 x x e
                                                       n! ¼  ðx þ 1Þ                                  ð5Þ
                           is obtained.
                              It is of interest that from (4)wecan also obtain the result (12)on Page 378.  See Problem 15.72.
                     DIRICHLET INTEGRALS
                                      ðð ð
                                                 z
                                          x   1  y   1 
 1  dx dy dz where V is
                     15.21. Evaluate I ¼
                                       V
                           the region in the first octant bounded by the sphere
                            2   2  2
                           x þ y þ z ¼ 1 and the coordinate planes.
                                  2
                                       2
                                            2
                              Let x ¼ u; y ¼ v; z ¼ w.  Then
                                  ððð                      dv  dw
                                           v
                                      u ð  1Þ=2 ð  1Þ=2  w ð
 1Þ=2 du
                               I ¼                     p ffiffiffi p ffiffiffi p ffiffiffiffi
                                                      2 u 2 v 2 w
                                    r
                                  1  ðð ð  ð =2Þ 1 ð =2Þ 1  ð
=2Þ 1
                                       u    v     w    du dv dw
                                 ¼                                  ð1Þ
                                  8
                                     r
                           where r is the region in the uvw space bounded by the plane
                           u þ v þ w ¼ 1 and the uv; vw, and uw planes as in Fig. 15-2.
                           Thus,
                                1  ð  1  ð 1 u  ð  1 u v  ð =2Þ 1 ð =2Þ 1  ð
=2Þ 1
                                            u    v     w    du dv dw                 Fig. 15-2
                             I ¼                                    ð2Þ
                                8 u¼0 v¼0  w¼0
                                1  ð 1  ð  1 u  ð =2Þ 1 ð =2Þ 1  
=2
                                4
  u¼0 v¼0
                              ¼         u    v    ð1   u   vÞ  du dv
                                1  ð 1  ð =2Þ 1   ð  1 u  ð =2Þ 1  
=2
                                4
  u¼0     v¼0
                              ¼      u        v    ð1   u   vÞ  dv du
                           Letting v ¼ð1   uÞt,we have
                                         ð  1 u                          ð 1
                                             v ð =2Þ 1  ð1   u   vÞ 
=2  dv ¼ð1   uÞ ð þ
Þ=2  t ð =2Þ 1  ð1   tÞ 
=2 dt
                                          v¼0                             t¼0
                                                                    ð þ
Þ=2  ð =2Þ  ð
=2 þ 1Þ
                                                              ¼ð1   uÞ
                                                                           ½ð  þ 
Þ=2 þ 1Š
   389   390   391   392   393   394   395   396   397   398   399