Page 390 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 390

CHAP. 15]                  GAMMA AND BETA FUNCTIONS                             381

                                     n
                              Letting ax ¼ y,the integral becomes
                                    ð         m                 ð
                                        y      y   y 1=n     1      ðmþ1Þ=n 1  y   1     m þ 1
                                     1    1=n                    1
                                              e  d                 y      e
                                        a          a    ¼  na ðmþ1Þ=n        dy ¼  na ðmþ1Þ=n  n
                                    0                            0
                     15.7. Evaluate  (a)  ð 1=2Þ;  ðbÞð 5=2Þ.

                                                                                  .
                                                                             ðx þ 1Þ
                              We use the generalization to negative values defined by  ðxÞ¼
                                                                              x
                                        1
                           ðaÞ Letting x ¼  ;       ð1=2Þ  ¼ 2  :
                                                              ffiffiffi
                                                            p
                                        2   ð 1=2Þ¼   1=2
                                                                      ffiffiffi
                                                                ffiffiffi
                                                              2     4
                                                               p
                                                                    p
                           ðbÞ Letting x ¼ 3=2;       ð 1=2Þ           ; using ðaÞ:
                                                       3=2  ¼   3=2  ¼  3
                                              ð 3=2Þ¼
                                                           ffiffiffi
                                                            :
                                               ð 3=2Þ   8 p
                                 Then  ð 5=2Þ¼       ¼
                                                5=2     15
                                                      n
                                    ð 1            ð 1Þ n!
                                            n
                                       m
                     15.8. Prove that  x ðln xÞ dx ¼   nþ1 , where n is a positive integer and m >  1.
                                     0           ðm þ 1Þ
                                                             ð
                                                              1
                                        y                   n   n  ðmþ1Þy
                              Letting x ¼ e ,the integral becomes ð 1Þ  y e  dy.If ðm þ 1Þy ¼ u,thislast integral becomes
                                                              0
                                     ð     n                n  ð               n              n
                                      1   u     u du            1                          ð 1Þ n!
                                    n                    ð 1Þ     n  u     ð 1Þ
                                 ð 1Þ        n  e  m þ 1  ¼  nþ1  u e  du ¼    nþ1   ðn þ 1Þ¼  nþ1
                                      0 ðm þ 1Þ        ðm þ 1Þ  0         ðm þ 1Þ         ðm þ 1Þ
                              Compare with Problem 8.50, Chapter 8, page 203.
                     15.9. Aparticle is attracted toward a fixed point O with a force inversely proportional to its instanta-
                           neous distance from O.If the particle is released from rest, find the time for it to reach O.
                              At time t ¼ 0 let the particle be located on the x-axis at x ¼ a > 0 and let O be the origin.  Then by
                           Newton’s law
                                                               2
                                                              d x    k
                                                             m  2  ¼                                  ð1Þ
                                                              dt     x
                           where m is the mass of the particle and k > 0isa constant of proportionality.
                                                                 2
                                 dx                             d x  dv  dv dx    dv
                              Let  ¼ v,the velocity of the particle.  Then  ¼  ¼     ¼ v    and (1)becomes
                                 dt                             dt 2  dt  dx dt   dx
                                                    dv    k        mv 2
                                                  mv  ¼       or       ¼ k ln x þ c                   ð2Þ
                                                    dx    x         2
                           upon integrating.  Since v ¼ 0at x ¼ a,we find c ¼ k ln a.  Then
                                                                           2k
                                                mv 2    a            dx   r ffiffiffiffiffi r ffiffiffiffiffiffiffiffiffi a
                                                    ¼ k ln   or                ln
                                                 2      x         v ¼  dt  ¼   m  x                   ð3Þ
                           where the negative sign is chosen since x is decreasing as t increases. We thus find that the time T taken for
                           the particle to go from x ¼ a to x ¼ 0isgiven by
                                                             r  ffiffiffiffiffi ð a
                                                               m     dx
                                                                   p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                          T ¼                                         ð4Þ
                                                               2k 0  ln a=x
   385   386   387   388   389   390   391   392   393   394   395