Page 387 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 387

378                        GAMMA AND BETA FUNCTIONS                       [CHAP. 15



                     Now use (8)to produce
                          ðxÞ ð1   xÞ¼
                           (                         ) !                      !
                                                                                        1
                                                               1
                                       1                       Y                  1    Y
                                                 1 x=k
                                      Y
                                                                                                  2
                               e
                                                                           e
                            x  1  
x  lim  ð1 þ x=kÞ e  e 
x  lim  ð1   x=kÞ  1  x=k  ¼  lim  ð1  ðx=kÞ Þ
                                       ¼1                       ¼1                      ¼1
                                   k!1                     k!1                    x k!1
                     Thus

                                                                 ;   0 < x < 1
                                                            sin  x
                                                ðxÞ ð1   xÞ¼                                       ð11aÞ
                     Observe that (11) yields the result
                                                            1   p ffiffiffi
                                                            2
                                                           ð Þ¼                                    ð11bÞ
                        Another exact representation of  ðx þ 1Þ is

                                                 ffiffiffiffiffiffi        1     1      139
                                               p    xþ1  x
                                                 2  x  e
                                       ðx þ 1Þ¼            1 þ   þ     2  þ     3  þ                ð12Þ
                                                              12x  288x   51840x
                        The method of obtaining this result is closely related to Sterling’s asymptotic series for the gamma
                     function. (See Problem 15.20 and Problem 15.74.)
                        The duplication formula
                                                  2 2x 1       1    p ffiffiffi
                                                               2  ¼     ð2xÞ                       ð13aÞ
                                                       ðxÞ   x þ
                     also is part of the literature.  Its proof is given in Problem 15.24.
                        The duplication formula is a special case ðm ¼ 2Þ of the following product formula:

                                              1       2          m   1     1  mx  m 1
                                                                        ¼ m 2
                                             m        m            m
                                     ðxÞ   x þ    x þ          X þ            ð2 Þ 2  ðmxÞ         ð13bÞ
                        It can be shown that the gamma function has continuous derivatives of all orders.  They are
                     obtained by differentiating (with respect to the parameter) under the integral sign.
                                                 ð
                                                  1  x 1  yt              x 1             x 1
                                                   t  e   dt and that if y ¼ t  , then ln y ¼ ln t  ¼ðx   1Þ ln t.
                        It helps to recall that  ðxÞ¼
                              1                   0
                     Therefore,  y ¼ ln t.
                                0
                              y
                        It follows that
                                                           ð
                                                            1
                                                              x 1  t
                                                             t   e ln tdt:
                                                     0
                                                      ðxÞ¼                                         ð14aÞ
                                                           0
                        This result can be obtained (after making assumptions about the interchange of differentiation with
                     limits) by taking the logarithm of both sides of (9) and then differentiating.
                        In particular,
                                                 ð1Þ¼  
   ð
 is Euler’s constant.)                ð14bÞ
                                                0
                     It also may be shown that

                                                   1  1     1   1         1      1
                                        0
                                        ðxÞ
                                                   1  x     2  x þ 1      n  x þ n   1
                                           ¼ 
 þ         þ           þ                              ð15Þ
                                       ðxÞ
                     (See Problem 15.73 for further information.)
                     THE BETA FUNCTION
                     The beta function is a two-parameter composition of gamma functions that has been useful enough in
                     application to gain its own name. Its definition is
   382   383   384   385   386   387   388   389   390   391   392