Page 382 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 382

CHAP. 14]                       FOURIER INTEGRALS                               373


                                   10 @ x < 1
                                   0    x A 1
                     14.18. If f ðxÞ¼        find the (a) Fourier sine transform, (b) Fourier cosine transform of f ðxÞ.In
                           each case obtain the graph of f ðxÞ and its transform.
                                  r  ffiffiffi           r ffiffiffi
                                    2 1   cos       2 sin
                           Ans:  ðaÞ         ;  ðbÞ      :

                                                         x
                     14.19. (a)Find the Fourier sine transform of e , x A 0
                                      ð
                                       1  x sin mx
                           ðbÞ Show that  2   dx ¼  e  m ; m > 0byusing the result in ðaÞ:
                                       0  x þ 1    2
                           (c) Explain from the viewpoint of Fourier’s integral theorem why the result in (b) does not hold for m ¼ 0.
                                  p ffiffiffiffiffiffiffiffi  2
                           Ans.  (a)  2=  ½ =ð1 þ   ފ
                     14.20. Solve for YðxÞ the integral equation
                                                                  8
                                                                    1  0 @ t < 1
                                                    ð
                                                     1            <
                                                                    2  1 @ t < 2
                                                       YðxÞ sin xt dx ¼
                                                     0            : 0  t A 2
                           and verify the solution by direction substitution.
                           Ans.  YðxÞ¼ð2 þ 2cos x   4cos 2xÞ= x
                     PARSEVAL’S IDENTITY
                                     ð              ð    2
                                      1   dx         1  x dx
                     14.21. Evaluate  (a)     ;              by use of Parseval’s identity.
                                         2   2   ðbÞ    2   2
                                      0 ðx þ 1Þ      0 ðx þ 1Þ
                                                                   x
                           [Hint: Use the Fourier sine and cosine transforms of e , x > 0.]
                           Ans:  ðaÞ  =4;  ðbÞ  =4
                                                                  2
                                                       ð                      ð    4
                                                       1  1   cos x            1  sin x
                     14.22. Use Problem 14.18 to show that  (a)   dx ¼  ;  ðbÞ     2  dx ¼ .
                                                       0     x        2        0  x      2
                                   ð            2
                                   1
                     14.23. Show that  ðx cos x   sin xÞ  dx ¼  .
                                           6
                                   0      x          15
                     MISCELLANEOUS PROBLEMS
                                        2
                                  @U   @ U                   x
                     14.24. (a) Solve  ¼ 2  , Uð0; tÞ¼ 0; Uðx; 0Þ¼ e ; x > 0; Uðx; tÞ is bounded where x > 0; t > 0.
                                  @t    @x 2
                           (b)Give a physical interpretation.
                                              2
                                             2  t
                                        ð
                                       2  1   e  sin  x
                           Ans:  Uðx; tÞ¼           d
                                             2
                                               þ 1
                                        0
                                    2
                               @U  @ U                     x 0 @ x @ 1
                     14.25. Solve  ¼   ; U x ð0; tÞ¼ 0; Uðx; 0Þ¼    , Uðx; tÞ is bounded where x > 0; t > 0.
                               @t   @x 2                 0      x > 1
                                        ð
                                       2  1  sin    cos     1     t
                                                          2
                           Ans:  Uðx; tÞ¼      þ    2   e   cos  xd
                                        0
                     14.26. (a) Show that the solution to Problem 14.13 can be written
                                                                            p
                                                            p
                                                       2  ð  x=2 t ffiffi   v 2  1  ð ð1þxÞ=2 t ffiffi   v 2
                                                              e               e  dv
                                                Uðx; tÞ¼ p ffiffiffi   dv   p ffiffiffi
                                                                            p ffiffi
                                                          0             ð1 xÞ=2 t
   377   378   379   380   381   382   383   384   385   386   387