Page 377 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 377

368                             FOURIER INTEGRALS                         [CHAP. 14

                                 r
                                                                       ffiffiffiffiffiffiffiffi
                                  2  1                               p          0 @   @ 1
                                  ffiffiffi ð
                              Let     f ðxÞ cos  xdx ¼ Fð Þ and choose Fð Þ¼  2= ð1    Þ  .  Then by Problem
                          14.3,     0                                    0           > 1
                                                                      1
                                                 r  ffiffiffi ð          r ffiffiffi ð r ffiffiffi
                                                   2  1             2    2

                                            f ðxÞ¼    Fð Þ cos  xd  ¼     ð1    Þ cos  xd
                                                     0                0
                                                 2  ð  1          2ð1   cos xÞ
                                                ¼   ð1    Þ cos  xd  ¼  2
                                                   0                  x
                                                    ð    2
                                                       sin u
                                                     1
                     14.5. Use Problem 14.4 to show that  2  du ¼ .
                                                     0  u       2
                              As obtained in Problem 14.4,
                                                2  ð  1  1   cos x    1     0 @   @ 1
                                                  0   x 2  cos  xdx ¼  0       > 1
                          Taking the limit as   ! 0þ,we find
                                                          ð
                                                           1  1   cos x
                                                           0   x 2  dx ¼  2
                                                    ð    2                  ð   2
                                                     1                       1  sin u
                          But this integral can be written as  2 sin ðx=2Þ  dx which becomes  2  du on letting x ¼ 2u,sothat
                                                          2
                                                     0   x                   0  u
                          the required result follows.
                                   ð
                                    1  cos  x
                                                    x
                     14.6. Show that   2    d  ¼  e ; x A 0.
                                    0   þ 1     2
                              Let f ðxÞ¼ e  x  in the Fourier integral theorem
                                                         ð         ð
                                                        2  1        1
                                                            cos  xd   f ðuÞ cos  udu
                                                   f ðxÞ¼
                                                          0         0
                                                    2  ð  1   ð  1
                          Then                         cos  xd   e  u  cos  udu ¼ e  x
                                                      0        0
                                                           ð
                                                            1             1
                          But by Problem 12.22, Chapter 12, we have  e  u  cos  udu ¼  2  .  Then
                                                            0             þ 1
                                             2  ð 1  cos  x   x      ð 1  cos  x      x
                                                      d  ¼ e    or                e
                                                                        2
                                                  2
                                               0   þ 1                0   þ 1  d  ¼  2
                     PARSEVAL’S IDENTITY

                     14.7. Verify Parseval’s identity for Fourier integrals for the Fourier transforms of Problem 14.1.
                              We must show that
                                                      ð           ð
                                                      1            1
                                                             2           2
                                                         f f ðxÞg dx ¼  fFð Þg d
                                                       1            1
                                     (
                                                          r ffiffiffi
                                       1 jxj < a           2 sin  a
                                                                 :
                                       0 jxj > a
                          where f ðxÞ¼          and Fð Þ¼
   372   373   374   375   376   377   378   379   380   381   382