Page 374 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 374

CHAP. 14]                       FOURIER INTEGRALS                               365

                     EXAMPLE.  Determine the Fourier transform of f if f ðxÞ¼ e  x  for x > 0 and e 2x  when x < 0.

                                               1  ð 1  i x      1    ð 0  i x 2x  ð 1  i x  x
                                                     e                 e          e  e  dx
                                        Fð Þ¼ p ffiffiffiffiffiffi  f ðxÞ dx ¼ p ffiffiffiffiffiffi  e dx þ
                                                                 2              0
                                              2 2   1
                                                                     1
                                                 (                    )
                                               1   e i þ2    x!0   e i  1    x!1  1  1  1

                                               2  i  þ 2      i    1       2  2 þ  i  1    i
                                            ¼ p ffiffiffiffiffiffi      þ           ¼ p ffiffiffiffiffiffi  þ
                                                       x! 1        x!0þ
                        If f ðxÞ is an even function, equation (5)yields
                                                 8        r ffiffiffi  ð
                                                           2  1
                                                 >
                                                 >             f ðuÞ cos  udu
                                                 >  F c ð Þ¼
                                                 <
                                                             0
                                                          r ffiffiffi  ð                                   ð9Þ
                                                           2
                                                 >           1
                                                 >
                                                 >             F c ð Þ cos  xd
                                                 :
                                                    f ðxÞ¼
                                                             0
                     and we call F c ð Þ and f ðxÞ Fourier cosine transforms of each other.
                        If f ðxÞ is an odd function, equation (6) yields
                                                 8        r ffiffiffi  ð
                                                           2  1
                                                 >
                                                 >             f ðuÞ sin  udu
                                                 >
                                                   F s ð Þ¼
                                                 <
                                                             0
                                                                                                    ð10Þ
                                                          r ffiffiffi  ð
                                                 >         2  1
                                                 >
                                                 >             F s ð Þ sin  xd
                                                 :
                                                    f ðxÞ¼
                                                             0
                     and we call F s ð Þ and f ðxÞ Fourier sine transforms of each other.
                        Note: The Fourier transforms F c and F s are (up to a constant) of the same form as Að Þ and Bð Þ.
                     Since f is even for F c and odd for F s , the domains can be shown to be 0 < < 1.
                        When the product of Fourier transforms is considered, a new concept called convolution comes into
                     being, and in conjunction with it, a new pair (function and its Fourier transform) arises. In particular, if
                     Fð Þ and Gð Þ are the Fourier transforms of f and g, respectively, and the convolution of f and g is
                     defined to be
                                                         1  ð 1
                                                               f ðuÞ gðx   uÞ du
                                                  f   g ¼ p ffiffiffi                                     ð11Þ
                                                             1
                     then
                                                             1  ð 1  i u
                                                                  e f   gdu
                                                             ffiffiffi
                                                  Fð Þ Gð Þ¼ p     1                                ð12Þ
                                                             1  ð 1   i x
                                                                  e   Fð Þ Gð Þ d
                                                             ffiffiffi
                                                      f   g ¼ p     1                               ð13Þ
                     where in both (11) and (13) the convolution f   g is a function of x.
                        It may be said that multiplication is exchanged with convolution. Also ‘‘the Fourier transform of
                     the convolution of two functions, f and g is the product of their Fourier transforms,’’ i.e.,
                                                      Tðf   gÞ¼ Gð f Þ TðgÞ:
                     ðFð Þ Gð Þ and f   g) are demonstrated to be a Fourier transform pair in Problem 14.29.)
                        Now equate the representations of f   g expressed in (11) and (13), i.e.,
                                          1  ð 1               1  ð 1   i x
                                                                     e   Fð Þ Gð Þ d
                                           ffiffiffi                  ffiffiffi
                                         p     1  f ðuÞ gðx   uÞ du ¼ p     1                       ð14Þ
                     and let the parameter x be zero, then
                                               ð                ð
                                                1                1
                                                                   Fð Þ Gð Þ d
                                                   f ðuÞ gð uÞ du ¼                                 ð15Þ
                                                 1               1
   369   370   371   372   373   374   375   376   377   378   379