Page 371 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 371

362                               FOURIER SERIES                          [CHAP. 13



                                         2x  X  4cos m    m t
                                                         2
                                              1
                          Ans:  Uðx; tÞ¼ 1 þ  þ       e   sin mx
                                                 m
                                             m¼1
                     13.51. Give a physical interpretation to Problem 13.50.
                     13.52. Solve Problem 13.49 with the boundary conditions for Yðx; 0Þ and Y t ðx; 0Þ interchanged, i.e., Yðx; Þ¼ 0;
                          Y t ðx; 0Þ¼ 0:05xð2   xÞ, and give a physical interpretation.
                                      3:2  X  1      ð2n   1Þ x  3ð2n   1Þ t
                                          1
                          Ans:  Yðx; tÞ¼           sin       sin
                                      3  4       4      2          2
                                         n¼1  ð2n   1Þ
                     13.53. Verify that the boundary-value problem of Problem 13.24 actually has the solution (14), Page 357.
                     MISCELLANEOUS PROBLEMS
                     13.54. If   < x <  and   6¼ 0;  1;  2; ... ; prove that
                                                   sin  x  sin x  2 sin 2x  3 sin 3x
                                                 2 sin     ¼  1     2     2     2  þ  3     2
                                                                 2
                                                                        2
                                                          2
                     13.55. If   < x < ,prove that
                                sinh  x  sin x  2 sin 2x  3 sin 3x
                              2 sinh       þ 1    þ 2    þ 3
                          ðaÞ        ¼  2  2     2  3  þ  2  2
                                cosh  x  1    cos x    cos 2x
                              2 sinh     2     þ 1    þ 2
                          ðbÞ        ¼      2  2  þ  2  2
                                                !       !        !
                                              x 2     x 2     x 2
                     13.56. Prove that sinh x ¼ x 1 þ  2  1 þ  2  1 þ  2

                                                     ð2 Þ    ð3 Þ
                                               !        !       !
                                            4x 2    4x 2     4x 2
                     13.57. Prove that cos x ¼ 1    2  1    2  1    2

                                                    ð3 Þ     ð5 Þ
                          [Hint: cos x ¼ðsin 2xÞ=ð2 sin xÞ:Š
                                        ffiffiffi
                                      p
                                        2  1   3   5   7   9   22   13   15 .. .
                     13.58. Show that  (a)
                                       2  ¼  2   2   6   6   10   10   14   14 ...

                                         ffiffiffi  4   4   8   8   12   12   16   16 ...
                                       p
                                    (b)   2 ¼ 4
                                              3   5   7   9   11   13   15   17 ...
                     13.59. Let r be any three dimensional vector.  Show that
                                                       2
                                                                    2
                                                             2
                                            2
                                       2
                                 2
                          (a) ðr   iÞ þðr   jÞ @ ðrÞ ;  ðbÞðr   iÞ þðr   jÞ þðr   kÞ ¼ r 2
                          and discusse these with reference to Parseval’s identity.
                                                                       (             ) 2
                                                                      b       1
                                                                     ð
                                                                             X
                     13.60. If f  n ðxÞg; n ¼ 1; 2; 3; ... is orthonormal in (a; b), prove that  f ðxÞ   c n   n ðxÞ  dx is a minimum when
                                                                      a       n¼1
                                                             ð b
                                                               f ðxÞ   n ðxÞ dx
                                                          c n ¼
                                                              a
                          Discuss the relevance of this result to Fourier series.
   366   367   368   369   370   371   372   373   374   375   376