Page 376 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 376

CHAP. 14]                       FOURIER INTEGRALS                               367

                                                                ð
                                                                    sin  a cos  x
                                                                 1
                     14.2. (a) Use the result of Problem 14.1 to evaluate      d

                                                                  1
                                               ð
                                                1  sin u
                           ðbÞ Deduce the value of    du:
                                                0  u
                           (a)From Fourier’s integral theorem, if
                                               1  ð  1                      1  ð 1
                                                    f ðuÞ e i u  du  then        Fð Þ e  i x  d
                                        Fð Þ¼ p ffiffiffiffiffiffi               f ðxÞ¼ p ffiffiffiffiffiffi
                                               2   1
                                                                            2   1
                              Then from Problem 14.1,
                                                                       8
                                                       r ffiffiffi            1   jxj < a
                                                  1  1   2 sin  a   i x  <
                                                    ð
                                                               e        1=2 jxj¼ a
                                                 p ffiffiffiffiffiffi          d  ¼                               ð1Þ

                                                                        0   jxj > a
                                                                       :
                                                  2   1
                                  The left side of (1)isequal to
                                                1  ð  1  sin  a cos  x  i  ð  1  sin  a sin  x
                                                                                d
                                                              d        1                              ð2Þ
                                                   1
                                  The integrand in the second integral of (2)is odd and so the integral is zero. Then from (1) and
                              (2), we have
                                                                    8
                                                                          jxj < a
                                                   ð                <
                                                      sin  a cos  x   =2 jxj¼ a
                                                    1
                                                                d  ¼  :                               ð3Þ
                                                     1               0    jxj > a
                              Alternative solution:Since the function, f ,inProblem 14.1 is an even function, the result follows
                              immediately from the Fourier cosine transform (9).
                           (b)If x ¼ 0 and a ¼ 1inthe result of (a), we have
                                                    sin    d  ¼    or   sin
                                                 ð                    ð
                                                  1                    1
                                                   1                   0     d  ¼  2
                              since the integrand is even.
                     14.3. If f ðxÞ is an even function show that:
                                    r ffiffiffi  ð                     r ffiffiffi  ð
                                      2  1                         2  1
                                          f ðuÞ cos  udu;              Fð Þ cos  xd :
                           ðaÞ Fð Þ¼                     ðbÞ f ðxÞ¼
                                       0                             0
                              We have
                                            1  ð  1  i u    1  ð  1            i  ð  1
                                                 f ðuÞ e                            f ðuÞ sin  udu
                                     Fð Þ¼ p ffiffiffiffiffiffi    du ¼ p ffiffiffiffiffiffi  f ðuÞ cos  udu þ p ffiffiffiffiffiffi       ð1Þ
                                                                               2   1
                                                            2   1
                                            2   1
                           (a)If f ðuÞ is even, f ðuÞ cos  u is even and f ðuÞ sin  u is odd. Then the second integral on the right of (1)is
                              zero and the result can be written
                                                                     r  ffiffiffi ð
                                                       ð
                                                     2  1              2  1
                                                                          f ðuÞ cos  udu
                                              Fð Þ¼ p ffiffiffiffiffiffi  f ðuÞ cos  udu ¼
                                                     2  0                0
                           (b)From (a), Fð  Þ¼ Fð Þ so that Fð Þ is an even function. Then by using a proof exactly analogous to
                              that in (a), the required result follows.
                                  A similar result holds for odd functions and can be obtained by replacing the cosine by the sine.
                                                 ð
                                                  1               1      0 @   @ 1
                     14.4. Solve the integral equation  f ðxÞ cos  xdx ¼
                                                  0                 0         > 1
   371   372   373   374   375   376   377   378   379   380   381