Page 381 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 381

372                             FOURIER INTEGRALS                         [CHAP. 14



                          so that, at least formally, the solution is given by
                                                          2  ð   1   cos         t 2
                                                            1
                                                                      e  sin  xdx
                                                   Uðx; tÞ¼                                          ð4Þ
                                                            0
                          See Problem 14.26.
                                      2
                     14.14. Show that e  x =2  is its own Fourier transform.
                                                                           ð
                                                                                2
                                    2                                p ffiffiffiffiffiffiffiffi  1   x =2
                                    x =2
                              Since e  is even, its Fourier transform is given by  2=  ¼  e  cos x  dx.
                                                                            0
                                        ffiffiffi
                                       p
                                        2 u and using Problem 12.32, Chapter 12, the integral becomes
                              Letting x ¼
                                               2  ð 1   u 2  p ffiffiffi  2  p       =2     =2
                                                                        ffiffiffi
                                                                                  2
                                                                           2
                                                    e                    e    ¼ e
                                                                    ffiffiffi
                                              p ffiffiffi    cosð  2 uÞ du ¼ p
                                                  0                    2
                          which proves the required result.
                     14.15. Solve the integral equation
                                                               ð
                                                                1
                                                                  yðuÞ rðx   uÞ du
                                                    yðxÞ¼ gðxÞþ
                                                                 1
                          where gðxÞ and rðxÞ are given.
                              Suppose that the Fourier transforms of yðxÞ; gðxÞ; and rðxÞ exist, and denote them by Yð Þ; Gð Þ; and
                          Rð Þ, respectively. Then taking the Fourier transform of both sides of the given integral equation, we have
                          by the convolution theorem
                                                     p ffiffiffiffiffiffi                    Gð Þ
                                                                   or
                                          Yð Þ¼ Gð Þþ  2  Yð Þ Rð Þ     Yð Þ¼    p ffiffiffiffiffiffi
                                                                              1    2  Rð Þ
                                                                  1  ð  1
                          Then             yðxÞ¼ f  1  p ffiffiffiffiffiffi  ¼ p ffiffiffiffiffiffi  p ffiffiffiffiffiffi  e  i x  d
                                                                           Gð Þ
                                                       Gð Þ
                                                    1    2  Rð Þ  2   1 1    2  Rð Þ
                          assuming this integral exists.
                                                Supplementary Problems

                     THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

                                                          1=2   jxj @
                                                           0   jxj >
                     14.16. (a)Find the Fourier transform of f ðxÞ¼
                          (b)Determine the limit of this transform as   ! 0þ and discuss the result.
                                    1  sin       1
                          Ans:  ðaÞ p ffiffiffiffiffiffi  ;  ðbÞ p ffiffiffiffiffiffi
                                    2            2
                                                              2
                                                          1   x  jxj < 1
                     14.17. (a)Find the Fourier transform of f ðxÞ¼
                                                            0   jxj > 1
                                    ð
                                     1  x cos x   sin x  x
                          (b) Evaluate      3      cos  dx.
                                     0      x         2
                                   r  ffiffiffi
                                    2   cos     sin    3
                          Ans:  ðaÞ 2             ;  ðbÞ
                                             3         16
   376   377   378   379   380   381   382   383   384   385   386