Page 391 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 391

382                        GAMMA AND BETA FUNCTIONS                       [CHAP. 15


                                                u
                          Letting ln a=x ¼ u or x ¼ ae ,this becomes
                                                    r  ffiffiffiffiffi ð       r ffiffiffiffiffi  r ffiffiffiffiffiffiffi
                                                      m  1             m         m
                                                                          1
                                                T ¼ a     u  1=2  u  du ¼ a   ð Þ¼ a
                                                              e
                                                                          2
                                                      2k 0            2k        2k
                     THE BETA FUNCTION
                                                                    ð  =2
                     15.10. Prove that  (a) Bðu; vÞ¼ Bðv; uÞ;  ðbÞ Bðu; vÞ¼ 2  sin 2u 1    cos 2v 1    d .
                                                                    0
                          (a)Using the transformation x ¼ 1   y,we have
                                          ð 1             ð 1             ð 1
                                            x u 1   v 1          u 1  y v 1  y v 1  u 1
                                   Bðu; vÞ¼    ð1   xÞ  dx ¼  ð1   yÞ  dy ¼    ð1   yÞ  dy ¼ Bðv; uÞ
                                           0               0               0
                                                      2
                          (b)Using the transformation x ¼ sin  ,we have
                                               ð 1             ð  =2
                                                x u 1   v 1         2  u 1  2  v 1  2 sin   cos   d
                                        Bðu; vÞ¼    ð1   xÞ  dx ¼  ðsin  Þ  ðcos  Þ
                                               0                0
                                                                ð  =2
                                                             ¼ 2   sin 2u 1    cos 2v 1    d
                                                                 0

                                                    u; v > 0.
                                            ðuÞ  ðvÞ
                     15.11. Prove that Bðu; vÞ¼
                                            ðu þ vÞ
                                                       ð             ð
                                                        1            1
                                     2   2                 u 1  z       2u 1  x 2
                              Letting z ¼ x ; we have  ðuÞ¼  z  e  dx ¼ 2  x  e  dx:
                                                        0            0
                                            ð
                                             1       2
                                                  e
                              Similarly,  ðvÞ¼ 2  y 2v 1  y  dy:  Then
                                             0
                                                          ð            ð

                                                          1       2     1       2
                                                ðuÞ  ðvÞ¼ 4  x 2u 1  x  dx  y 2v 1  y  dy
                                                                             e
                                                                e
                                                          0             0
                                                        ð ð
                                                         1  1           2  2
                                                      ¼ 4    x 2u 1  y 2v 1  ðx þy Þ  dx dy
                                                                     e
                                                         0  0
                              Transforming to polar coordiantes, x ¼   cos  ; y ¼   sin  ,
                                                     =2  1
                                                   ð  ð
                                                                e
                                          ðuÞ  ðvÞ¼ 4       2ðuþvÞ 1    2  cos 2u 1    sin 2v 1    d  d
                                                     ¼0  ¼0
                                                     ð              ð  =2

                                                     1          2
                                                             e
                                                ¼ 4      2ðuþvÞ 1     d   cos 2u 1    sin 2v 1    d
                                                      ¼0              ¼0
                                                           =2
                                                         ð
                                                            cos 2u 1    sin 2v 1
                                                ¼ 2 ðu þ vÞ               d  ¼  ðu þ vÞ Bðv; uÞ
                                                          0
                                                ¼  ðu þ vÞ Bðu; vÞ
                          using the results of Problem 15.10.  Hence, the required result follows.
                              The above argument can be made rigorous by using a limiting procedure as in Problem 12.31,
                          Chapter 12.
                     15.12. Evaluate each of the following integrals.
                              ð 1                         4!3!  1
                                4     3            ð5Þ  ð4Þ
                          ðaÞ  x ð1   xÞ dx ¼ Bð5; 4Þ¼   ¼  8!  ¼  280
                              0                     ð9Þ
   386   387   388   389   390   391   392   393   394   395   396