Page 399 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 399

390                        GAMMA AND BETA FUNCTIONS                       [CHAP. 15


                                            ð  =2           p
                                                 p
                     15.59. If 0 < p < 1prove that  tan   d  ¼  sec  .
                                             0         2    2
                                   ð 1  x u 1  v 1
                     15.60. Prove that  ð1   xÞ   Bðu; vÞ  where u; v, and r are positive constants.
                                           uþv  ¼  u   uþv
                                   0  ðx þ rÞ    r ð1 þ rÞ
                          [Hint: Let x ¼ðr þ 1Þy=ðr þ yÞ.]
                                   ð  =2  sin 2u 1   cos 2v 1    d
                     15.61. Prove that   2         uþv  ¼  Bðu; vÞ  where u; v > 0.
                                                         v u
                                                 2
                                   0  ða sin   þ b cos  Þ  2a b
                                       2
                          [Hint: Let x ¼ sin   in Problem 15.60 and choose r appropriately.]
                                   1  dx  1  1  1
                                   ð
                     15.62. Prove that  ¼  þ  þ  þ
                                   0 x x  1 1  2 2  3 3
                     15.63. Prove that for m ¼ 2; 3; 4; ...
                                                         2    3     ðm   1Þ   m
                                                  sin  sin  sin       sin  ¼
                                                    m    m    m        m     2 m 1
                                                m
                          [Hint: Use the factored form x   1 ¼ðx   1Þðx     1 Þðx     2 Þ   ðx     n 1 Þ,divide both sides by x   1, and
                          consider the limit as x ! 1.]

                                   ð  =2
                     15.64. Prove that  ln sin xdx ¼  =2ln 2 using Problem 15.63.
                                   0
                          [Hint: Take logarithms of the result in Problem 15.63 and write the limit as m !1 as a definite integral.]
                                                                ðm 1Þ=2
                                     1    2    3      m   1
                     15.65. Prove that                      ¼  ð2 Þ p ffiffiffiffi  :
                                     m    m   m        m         m
                          [Hint: Square the left hand side and use Problem 15.63 and equation (11a), Page 378.]

                                   ð 1
                                             1
                     15.66. Prove that  ln  ðxÞ dx ¼ lnð2 Þ.
                                             2
                                   0
                          [Hint: Take logarithms of the result in Problem 15.65 and let m !1.]
                                     ð
                                      1  sin x
                     15.67. (a)Prove that  p  dx ¼         ;  0 < p < 1.
                                      0  x      2  ð pÞ sinð p =2Þ
                          (b)Discuss the cases p ¼ 0 and p ¼ 1.
                                     ð             ð
                                      1             1
                                                          3
                                           2
                     15.68. Evaluate  (a)  sin x dx;  ðbÞ  x cos x dx.
                                      0             0

                                   p
                          Ans:  ðaÞ  1 2   =2;  ðbÞ  p ffiffiffi
                                     ffiffiffiffiffiffiffiffi
                                             3 3  ð1=3Þ
                                     x   ln x
                                   ð  p 1
                                   1
                                                  2
                     15.69. Prove that      dx ¼   csc p  cot p ;  0 < p < 1.
                                   0  1 þ x
                                  ð             2 p ffiffiffi
                                   1  ln x        2
                     15.70. Show that     dx ¼     .
                                      4
                                   0 x þ 1      16
                                              2
                     15.71. If a > 0; b > 0, and 4ac > b ,prove that
                                                  ð  ð
                                                            2    2
                                                   1  1                    2
                                                         e  ðax þbxyþcy Þ  dx dy ¼ p  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                          4ac   b 2
                                                    1   1
   394   395   396   397   398   399   400   401   402   403   404