Page 136 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 136

WAVEFORMS AND SIGNALS
               CHAP. 6]
               6.29  Find the average and effective values of v 1 ðtÞ in Fig. 6-24(a) and v 2 ðtÞ in Fig. 6-24(b).  125
                                           r ffiffiffiffiffi               r ffiffiffiffiffi
                                   1         17         1         13
                     Ans:  V 1;avg ¼  ; V 1;eff ¼  ; V 2;avg ¼  ; V 2;eff ¼
                                   3         3          2          2
               6.30  The current through a series RL circuit with R ¼ 5 
 and L ¼ 10 H is given in Fig. 6-10(a) where T ¼ 1s.
                     Find the voltage across RL.
                              8
                              > 0       for t < 0
                              <
                     Ans:  v ¼  10 þ 5t  for 0 < t < 1
                              >
                              :
                               5        for t > 1
                                                                                      6
                                                                                              t
               6.31  Find the capacitor current in Problem 6.19 (Fig. 6-20) for all t.  Ans:  i C ¼ 10 ½ ðtÞ  e uðtފ

               6.32  The voltage v across a 1-H inductor consists of one cycle of a sinusoidal waveform as shown in Fig. 6-25(a).
                     (a) Write the equation for vðtÞ.(b) Find and plot the current through the inductor. (c) Find the amount
                     and time of maximum energy in the inductor.

                                                 2 t
                     Ans:  ðaÞ  v ¼½uðtÞ  uðt   Tފ sin  ðVÞ
                                                 T

                                                          2 t
                          ðbÞ  i ¼ðT=2 Þ½uðtÞ  uðt   Tފ 1   cos  ðAÞ:  See Fig. 6-25ðbÞ:
                                                           T
                                      1
                          ðcÞ  W max ¼  T  2  ðJÞ at t ¼ T=2
                                     2  2


















                                                        Fig. 6-24


               6.33  Write the expression for vðtÞ which decays exponentially from 7 at t ¼ 0to 3at t ¼1 with a time constant of
                     200 ms.   Ans:  vðtÞ¼ 3 þ 4e  5t  for t > 0

               6.34  Write the expression for vðtÞ which grows exponentially with a time constant of 0.8 s from zero at t ¼ 1 to
                     9at t ¼ 0.  Ans:  vðtÞ¼ 9e 5t=4  for t < 0

               6.35  Express the current of Fig. 6-6 in terms of step functions.
                                      X
                                       1
                     Ans:  iðtÞ¼ 4uðtÞþ 6  ½uðt   5kÞ  uðt   5k þ 2ފ
                                       k¼1
               6.36  In Fig. 6-10(a) let T ¼ 1 s and call the waveform s 1 ðtÞ.  Express s 1 ðtÞ and its first two derivatives ds 1 =dt and
                      2
                           2
                     d s 1 =dt , using step and impulse functions.
                                                                             2
                                                                         2
                     Ans:  s 1 ðtÞ¼ ½uðtÞ  uðt   1ފt þ uðt   1Þ; ds 1 =dt ¼ uðtÞ  uðt   1Þ; d s 1 =dt ¼  ðtÞ   ðt   1Þ
   131   132   133   134   135   136   137   138   139   140   141