Page 173 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 173

HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY
               162


















                                                        Fig. 8-2                                [CHAP. 8


                   The series RLC circuit shown in Fig. 8-3 contains no voltage source.  Kirchhoff’s voltage law for
               the closed loop after the switch is closed is

                                                    v þ v þ v ¼ 0
                                                          L
                                                              C
                                                     R
                                                              ð
                                                        di  1
               or                                Ri þ L   þ    idt ¼ 0
                                                        dt  C
               Differentiating and dividing by L yields
                                                   2
                                                  d i  R di   1
                                                     þ     þ     i ¼ 0
                                                  dt 2  L dt  LC
                                                                              s 1 t  s 2 t
               A solution of this second-order differential equation is of the form i ¼ A 1 e  þ A 2 e .  Substituting this
               solution in the differential equation obtains
















                                                        Fig. 8-3


                                              R      1        s 2 t  2  R   1
                                       s 1 t
                                           2
                                    A 1 e  s 1 þ  s 1 þ  þ A 2 e  s 2 þ  s 2 þ  ¼ 0
                                              L     LC               L     LC
                                               2
               that is, if s 1 and s 2 are the roots of s þðR=LÞs þð1=LCÞ¼ 0,
                                   s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi          s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi




                               R       R  2  1                       R       R  2   1
                        s 1 ¼    þ                   þ         s 2 ¼
                              2L      2L     LC                      2L     2L     LC
                                  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffi
                                     2
                                          2
               where     R=2L,          ! , and ! 0   1= LC.
                                          0
   168   169   170   171   172   173   174   175   176   177   178