Page 177 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 177

HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY
               166
                         2
                     2
               Since   >! 0 , the circuit is overdamped and from (2) we have                    [CHAP. 8
                                        q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi               q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                              2
                                          2
                                                                               2
                                                                           2
                               s 1 ¼   þ      ! ¼ 1271    and   s 2 ¼          ! ¼ 4717
                                              0
                                                                               0

                                                              dv
               At t ¼ 0;                 V 0 ¼ A 1 þ A 2  and        ¼ s 1 A 1 þ s 2 A 2
                                                              dt  t¼0
               From the nodal equation (1), at t ¼ 0 and with no initial current in the inductance L,

                                                  dv            dv
                                            V 0                          V 0
                                              þ C   ¼ 0   or         ¼

                                            R     dt            dt t¼0   RC
               Solving for A 1 ,
                                 V 0 ðs 2 þ 1=RCÞ
                            A 1 ¼           ¼ 155:3   and   A 1 ¼ V 0   A 1 ¼ 50:0   155:3 ¼ 105:3
                                    s 2   s 1
               Substituting into (2)
                                                       1271t      4717t
                                              v ¼ 155:3e    105:3e     ðVÞ
               See Fig. 8-8.






















                                                        Fig. 8-8
                                             2    2
               Underdamped (Oscillatory) Case ð! 0 >  Þ
                   The oscillatory case for the parallel RLC circuit results in an equation of the same form as that of
               the underdamped series RLC circuit.  Thus,
                                                    t
                                              v ¼ e  ðA 1 cos ! d t þ A 2 sin ! d tÞ                 ð3Þ
                                        q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                           2
                                               2
               where   ¼ 1=2RC and ! d ¼  !     .  ! d is a radian frequency just as was the case with sinusoidal
                                           0
               circuit analysis.  Here it is the frequency of the damped oscillation. It is referred to as the damped
               radian frequency.
               EXAMPLE 8.5 A parallel RLC circuit, with R ¼ 200 
, L ¼ 0:28 H, and C ¼ 3:57 mF, has an initial voltage
               V 0 ¼ 50:0 V on the capacitor.  Obtain the voltage function when the switch is closed at t ¼ 0.
                        1           1                                       1          1
                                                                        2
                                                       2
                      ¼    ¼                ¼ 700       ¼ 4:9   10 5   ! 0 ¼  ¼                ¼ 10 6
                                          6
                                                                                             6
                       2RC   2ð200Þð3:57   10 Þ                            LC   ð0:28Þð3:57   10 Þ
                     2
                         2
               Since ! 0 >  , the circuit parameters result in an oscillatory response.
   172   173   174   175   176   177   178   179   180   181   182