Page 116 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 116

CHAP.  21                 LINEAR TIME-INVARIANT SYSTEMS




                  (b)  h[nl  = -2h[n - 11 + 6[n] + 6[n - 11
                       Since the system is causal, h[ - 1] = 0. Then
                                      h[O] = -2h[ - 1] + 6[0] + 6[ - 11 = S[O] = 1

                                      h[l] = -2h[O] + 6[1] + S[O] = -2 + 1  = - 1
                                      h[2] = -2h[l] + 6[2] + S[l] = -2(  - 1) = 2
                                      h[3]  = -2h[2] + 6[3] + 6[2] = -2(2) = -2'






                       Hence,                 h[n] = 6[n] + ( - 1)"2"-'u[n - 11
                       Since h[nl has infinite  terms, the system is an IIR system.
                  (c)  h[nl = ih[n - 21 + 26[n] - 6[n - 21
                       Since the system is causal, h[- 21  = h[ - 11 = 0. Then













                       Hence,                          h[n] = 26[n]
                       Since h[nl has only one term, the system is a FIR system.






                                       Supplementary Problems


           2.46.  Compute the convolution  y(t ) = x( t  * h(t ) of the following pair of signals:
                                      -a  <t <a  , h(t) = I0     -a  <t la
                                                        1
                 (a)  X(I) =
                                      otherwise                  otherwise
                                      O<rsT                    O<r52T
                                      otherwise '              otherwise


                                   2a  - It1     It( < 2a
                 Am.  (a)  YO)=
                                                 111 L 2a
                                                          r<O
                                                          O<t_<T
                                                          T<rs2T
                                                          2T<rs3T
                                                          3T<t
   111   112   113   114   115   116   117   118   119   120   121