Page 159 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 159

148         LAPLACE TRANSFORM AND CONTINUOUS-TIME LTI SYSTEMS                  [CHAP.  3








                                                     -




                                        Fig. 3-13  Feedback system.

                Let
                Then,

                                                  Y(s) = E(s) F(s)                           (3.87)
                                                  R(s)  = Y(s)G(s)                           (3.88)
                Since
                                                 e(t) =x(t) +r(t)
                we have
                                                E(s) = X(s) + R(s)                           (3.89)
                Substituting  Eq.  (3.88) into  Eq.  (3.89) and  then  substituting  the  result  into  Eq.  (3.87), we
                obtain
                                           Y(s) = [X(s) + Y(s)G(s)lF(s)
                or                         [l - ~(s)G(s)] ~(s) F(s) X(s)
                                                              =
                Thus, the overall system function  is






          UNILATERAL LAPLACE TRANSFORM


          3.32.  Verify Eqs. (3.44) and  (3.45), that is,
                      d-41)
                (a)  - sXI(s) -x(O-)
                            H
                       dl



                (a)  Using  Eq. (3.43) and integrating by  parts, we obtain










                     Thus, we have
   154   155   156   157   158   159   160   161   162   163   164