Page 162 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 162

CHAP.  31   LAPLACE TRANSFORM AND CONTINUOUS-TIME LTI SYSTEMS




                 (a)  Using Eq. (3.441, we  have
                                                      mk(')  e-"
                                    SX,(S)  -x(o-)  = / -
                                                      0-  dt
                                                                         Wt)
                                                   = /O'd'oe-s'dt  +cT e -" dt
                                                      0-  dt
                                                                      e-st dt
                                                   =x(t)E?+ / -
                                                               a
                                                              o+  dt
                                                                      -Wf)  e-s,dt
                                                   =x(O+) -x(o-)  + /  -
                                                                     o+  dt
                      Thus,





                      and            lirn  sX,(s) =x(O+) +
                                    5-07




                      since lim, ,, e-"  = 0.
                 (b)  Again using Eq. (3.441, we  have
                                                                  a&(t)
                                        lirn [sX,(s) - x(0-)]  = 1im / - ePS' dt
                                       s-o                   s-o  0-  dt

                                                                       lirn  e-"'





                                                           = lirn x(t ) - ~(0~)
                                                             t-rm
                      Since             lirn  [sX,(s) -x(0-)]  = lim  [sx,(s)]  -x(O-)
                                        s-ro                  s-ro
                      we  conclude that
                                                   limx(t) = lirnsX,(s)
                                                   t--t-     s-ro


           3.36.  The unilateral Laplace transform  is sometimes defined as




                 with  O+ as  the  lower  limit.  (This  definition  is  sometimes  referred  to  as  the  0'
                 definition.)
                 (a)  Show that
   157   158   159   160   161   162   163   164   165   166   167