Page 164 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 164

CHAP. 31    LAPLACE TRANSFORM AND CONTINUOUS-TIME LTI SYSTEMS



                 Assume that  y(0) = y(0-1.  Let

                                                    ~(t) -Y,(s)
                 Then from Eq. (3.44)
                                         yl(t) -sY,(s)  -y(O-)  =sY,(s) -Yo

                 From Table 3-1 we have
                                                        K
                                       x(t) -X,(S)   = -  Re(s) > -b
                                                       s+b
                 Taking the unilateral  Laplace transform of Eq. (3.1041, we obtain





                 or

                 Thus,

                                                         +
                                            Y1(s) = -            K
                                                   s+a     (s+a)(s+b)
                 Using partial-fraction  expansions, we obtain





                 Taking the inverse  Laplace transform of  Y,(s), we obtain
                                                        K
                                             [  yoe-"+  - - e-a:)
                                                            (e-br
                                       y(t) =          a-b
                 which is the same as Eq. (2.107). Noting that  y(O+) = y(0) = y(0-) = yo, we write y(t) as
                                                     K
                                                         (e-br
                                     y(t) = y0e-O1 + - - e-a')            t20
                                                    a-b
           3.38.  Solve the second-order linear differential equation

                                            y"(t) + 5y1(t) + 6y(t) =x(t)
                with the initial conditions  y(0) = 2,  yl(0) = 1,  and  x(t) = eP'u(t).
                    Assume that  y(0) = y(0-) and  yl(0) = yl(O-). Let

                                                   ~(t) -Y,(s)
                Then from Eqs. (3.44) and (3.45)
                                         yl(t) -sY,(s)  -y(0-)  =sY,(s)  - 2

                                 yN(t) - s2Y1(s) - sy(0-) - yl(O-)  = s2YJs) - 2s - I

                From Table 3-1 we have
   159   160   161   162   163   164   165   166   167   168   169